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Abstract— While humans intuitively excel at classifying
words according to their connotation, transcribing this innate
skill into algorithms remains challenging. We present a human-
guided methodology to learn binary word sentiment classifiers
from fewer interactions with humans. We introduce a human
perception model that relates the perceived sentiment of a word
to the distance between the word and the unknown classifier.
Our model informs the design of queries that capture more
nuanced information than traditional queries solely requesting
labels. Together with active learning strategies, our approach
reduces human effort without sacrificing learning fidelity. We
validate our method through experiments with human data,
demonstrating improved accuracy in binary sentiment word
classification.

I. INTRODUCTION

While humans are adept at classification, articulating the
underlying rules that lead to these classifications remains
elusive [1], leading to a gap between implicit human knowl-
edge and explicit classification rules of learning algorithms.
This gap makes it challenging to integrate human expertise
into learning algorithms and to develop machines capable of
making decisions informed by human experts. Addressing
this challenge is critical in a wide range of applications,
including medical diagnosis [2], [3], robotics [4], [5], and
word sense disambiguation [6].

We focus here on the binary sentiment word classifica-
tion task [7]. While humans can instinctively label words
according to their connotation as positive (e.g., healthy) or
negative (e.g., scary) [8], articulating the defining attributes
of each category proves challenging for most people. The
challenge is compounded by the need to transfer this implicit
human knowledge in a form that is understandable to both
humans and algorithms. As a result, the role of humans is
often limited to serving as oracles that label data points [9],
[10], [11].

Reducing the number of queries is crucial not just for
enhancing computational efficiency but also for minimizing
human annotator fatigue, thereby improving data quality.
Current strategies in sentiment classification [12], [13] in-
corporate active learning [14], [15] to select the most infor-
mative queries for human annotation. However, since humans
only have the limited role of providing labels, the amount
of information obtained from each query is low [16]. In the
case of a binary classifier, the maximum information gain per
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query is only 1 bit. Therefore, a high number of interactions
and substantial labeling effort are required.

Recognizing the inherent inefficiency, we propose richer
query forms that retain comprehensibility for both humans
and algorithms, while increasing the information gain. We
extend active learning frameworks to adapt to these enhanced
query types, further reducing the frequency of human-
computer interactions required.

The main contributions are as follows:
• We introduce a human response model that exploits

a newly observed linear relationship between the per-
ceived sentiment associated to a word and the distance
of the word to the sentiment classification boundary.
This model enhances the understanding and prediction
of human word selection behaviors.

• We design more informative queries for sentiment
classification by combining label requests with word
selection. We also propose a computationally efficient
strategy to update classifier beliefs based on these
enriched responses and to actively select informative
queries.

• We empirically validate our approach through experi-
ments involving human data. We demonstrate the effec-
tiveness of our method in enhancing sentiment classifi-
cation performance.

II. MODEL

Our primary goal is to learn a classifier separating words
according to their connotation using the minimum number
of interactions with humans. Specifically, we want to learn a
linear binary classifier θ ∈ Rd that correctly labels words
x ∈ X ⊆ Rd as positive or negative according to y =
sign(θTx). An established method for learning this implicit
knowledge, is to use humans as oracles within the framework
of the Bradley-Torrey model [19]. This model encapsulates
the probability of a word being labeled as positive (y = 1)
in the form of a logistic function

P [y = 1|x] =
(
1 + exp

(
w(θTx)

))−1

, (1)

with w ∈ R representing the inverse of the scale parameter.
To obtain more information from the humans, we propose

not only soliciting labels but also asking participants to
choose a word from a pool according to a query. This
requires a model that connects word embeddings with the
classifier in a manner both intuitive for humans and quantifi-
able for computational analysis. To force this relationships,
previous works [20] tailor embedding spaces to specific
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Fig. 1: Relationship between the score of words, given by the National Research Council Canada (NRC) [17] or SocialSent
[18] lexicons, and the distance of its embedding to the ground truth classifier. We observe there is an approximately linear
relationship.

tasks. Unlike these approaches, our model seeks to uncover
relationships that hold on pre-existing word embeddings in a
general way, for a wide range of datasets and classification
tasks.

Intuitively, we expect humans to be dubious when asked
to label word instances close to the boundary between
classes, and to find words more positive or negative as we
move farther from the hyperplane in opposite directions.
Heuristically, the intuition holds true for several lexicons
in a preexisting word embedding [21]. Previous work [22]
shows that there are three fundamental dimensions of mean-
ing: valence, representing the spectrum between positivity
and negativity; arousal, representing the contrast between
active and passive emotions; and dominance, capturing the
power dynamics from submissive to dominant. In all three
dimensions, Figure 1 shows how the scores of words, as
provided by the NRC dataset [17], vary with the distance to
the Minimum Mean-Square Error (MMSE) classifier. More
importantly, we observe an approximately linear relationship
between the score of a word and the inner product of its
embedding with the classifier. As shown in Figure 1d and
Figure 1e, this behavior is consistent across distinct and
independently gathered datasets [18] of valence scores. These
observations suggest an inherent connection between word
sentiment scores and the distance of their embeddings to
the classifier. To formalize this observation, we introduce
Assumption II.1.

Assumption II.1. The implicit sentiment score associated

with a word x by a human is given by

score(x) = axTθ + b+ ϵ, (2)

where ϵ ∼ Gumbel(µ, σ) is a random variable distributed
according to a Gumbel distribution. The scalars a ∈ R and
b ∈ R, which describe the linear relationship, are dataset
dependent.

Consider the question qpos = “Select and label the word
you find most positive;” in that case, we expect humans to
select the word with the highest perceived sentiment score.
We model the probability that the word xi is selected from
a word set S = {xj}|S|

j=1 as

P[xi|S,θ, qpos] = P[score(xi) > score(xj),∀j ̸= i]

= P[ϵj − ϵi < a(xi − xj)
Tθ,∀j ̸= i]

=
exp ( aσx

T
i θ)∑

x∈S exp ( aσx
Tθ)

, (3)

because this is a logit choice probability [23]. Analogously,
for the question qneg =“Select and label the word you find
most negative,”

P[xi|S,θ, qneg] =
exp (− a

σx
T
i θ)∑

x∈S exp (− a
σx

Tθ)
. (4)

Compared to the traditional approach of only requesting
the label, we gather more information from each query using
questions qpos and qneg.
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Fig. 2: Block diagram for human-in-the-loop learning for
sentiment word classification. At each interaction, the human
receives a query asking to select a word from a list, and
provide its label. The answer to the query is used to update
the estimator of the classifier and select the next query.

III. ALGORITHM

We propose an online machine learning algorithm to learn
a binary classifier of words from human feedback. Figure 2
illustrates the principle of our approach. At each iteration,
the learning algorithm selects the query (question q ∈ Q =
{qpos, qneg} and word set S) such that the expected human
response is as informative as possible, i.e., {q,S} maximizes
the mutual information [24] between the underlying classifier
and the human response. This task is managed by the query
selector. Next, the human answers the query by selecting
a word x from S and providing its label y. The classifier
estimator collects the response from the human and leverages
this information to update the estimator of the classifier
θ. The posterior P[θ|Ft], where Ft = {xi, yi, qi,Si}ti=1

denotes the history, is updated using Bayes rule. Namely,
the classifier estimator leverages the likelihood functions in
(1), (3) and (4). The approach is summarized in Algorithm
1.

Algorithm 1 Ideal Human-in-the-Loop Learning

1: Input: X ,Q, |S|,P[θ|F0], ϵ
2: t = 0
3: while uncertainty(θ|Ft) ≥ ϵ do
4: qt,St ← argmax

q∈Q,S∈{X}|S|
Ex,y|q,S [I(θ;x, y|q,S,Ft−1)]

5: xt, yt ← human response to the query
6: P[θ|Ft] ∝ P [xt|θ, qt,St]P [yt|xt,θ]P[θ|Ft−1]
7: t = t+ 1
8: end while

Since Algorithm 1 is intractable in high dimensional set-
tings, we provide approximations to make the computations
feasible in the next subsections. The tractable implementation
is described in Algorithm 2.

Algorithm 2 Approximate Human-in-the-Loop Learning

1: Input: X ,Q, |S|,µ0,Σ0, ϵ
d, N

2: t = 1
3: while |Σt| ≥ ϵd do
4: qt ← sample uniformly from {qpos, qneg}
5: St ← {}
6: for i = 1, 2, ..., |S| do
7: {θ̂n}Nn=1 ← sample i.i.d. from N (µt−1,Σt−1)
8: s← select word from dictionary with Eq. (7)
9: St ← {St, s}

10: end for
11: xt, yt ← human response to the query
12: µt,Σt ← µt−1,Σt−1

13: while µt,Σt not converged do
14: while µt,Σt not converged do
15: ξ2 = w2xTΣtx+ w2(xTµt)

2

16: Σ−1
t = Σ−1

t−1 + 2 tanh(ξ/2)
4ξ w2xxT

17: µt = Σt

[
Σ−1

t−1µt−1 +
(
y − 1

2

)
wx
]

18: end while
19: µt,Σt ← update according to the selected word

with (6)
20: end while
21: t = t+ 1
22: end while

Approximation of Belief Update

Line 6 of Algorithm 1 requires us to find the posterior

P[θ|Ft] =
P[xt|θ,St, qt]P[yt|xt,θ]

P[xt, yt|St, qt,Ft−1]
P[θ|Ft−1].

Unfortunately, the likelihood functions are not conjugate to
the prior, so an analytical closed-form expression for the
posterior is not available. To address this, we approximate
the posterior using variational inference. While Black-Box
Variational Inference (BBVI) [25] is commonly used in such
situations, we derive closed-form variational updates, which
we describe next, to achieve a lower variance approximation.

We approximate the classifier density function as a Gaus-
sian distribution θ ∼ N (µ,Σ). We may then compute
the posterior mean and variance given a word label by
an iterative process [26] described in lines 14 to 18 of
Algorithm 2.

In a similar fashion, we approximate the classifier pos-
terior given the word selected with a variational approach.
We look for the variational distribution q(θ) ∼ N (µq,Σq)
closest, in terms of the Kullback-Leibler (KL) distance, to the
true posterior. This is equivalent to finding the distribution
that maximizes the log Evidence Lower BOund (ELBO) [27]

ELBO(q) = −KL(q(θ)∥p(θ)) + Eθ∼q

[
KxT

s θ
]

− Eθ∼q

log |S|∑
j=1

exp
(
KxT

j θ
) , (5)

where xs is the word selected by the human, the prior is



p(θ) ∼ N (µp,Σp) and

K =

{
a
σ , q = qpos

− a
σ , q = qneg

.

The first term in (5) is the KL divergence between two
Gaussian distributions,

KL(q||p) =1

2

[
log
|Σp|
|Σq|

− d+ µq
TΣp

−1µq + µp
TΣp

−1µp

]
− µq

TΣp
−1µp +

1

2
tr
{
Σp

−1Σq

}
.

Because of the linearity of the expectation, we compute
the second term in (5) as

Eθ∼q

[
KxT

s θ
]
= KxT

s µq.

The third term in (5) has no closed-form solution, but
following [28], we apply Jensen’s inequality to obtain a lower
bound

Eθ∼q

log |S|∑
j=1

exp
(
KxT

j θ
)

≥ log

|S|∑
j=1

exp
(
KxT

j µq + 0.5xT
j Σqxj

)
.

We approximate the posterior distribution given the word se-
lection as a Gaussian distribution whose mean and covariance
are obtained by maximizing the ELBO upperbound

{µ,Σ} = argmin
µq,Σq

KL(q||p)−KxT
s µq

+ log

|S|∑
j=1

exp
(
KxT

j µq + 0.5xT
j Σqxj

)
. (6)

Lines 12 through 20 of Algorithm 2 approximate the poste-
rior by accounting for the human response. We first update
the posterior according to the label received. Then we update
the posterior according to the selected word with (6). We
repeat both updates until convergence.

Active Learning Heuristic for Query Selection

As line 4 of Algorithm 1 indicates, we aim to select the
query that, in expectation, provides the maximum informa-
tion about the true classifier. This requires us to compute
the posterior over every possible combination of word set,
query, label and word selection. Despite using a belief
approximation, the sheer number of possible combinations
renders this method computationally infeasible.

We propose an approximation based on query by commit-
tee [29]. At each iteration t, we sample N particles θ̂n

i.i.d∼
P[θ|Ft]. Next, we maximize the disagreement between the
prediction of each particle and the mean prediction among

all particles as,

{q,St} = argmax
q∈Q,S∈{X}|S|

H

(
1

N

N∑
n=1

[
xt, yt

∣∣∣θ̂n, q,S
])

− 1

N

N∑
n=1

H
(
xt, yt

∣∣∣θ̂n, q,S
)
,

where H(X) := −
∑

x∈X p(x) log p(x) represents the en-
tropy. The first term in the objective function promotes
queries with a high uncertainty in the expected output,
avoiding predictable answers which provide low information
gain. The second term attempts to reduce uncertainty caused
by intrinsic noise, such as when labeling neutral words
like “table.” In such cases, the uncertainty mostly stems
from human labeling inconsistencies rather than a lack of
exploration.

Empirically, we observe that actively selecting the question
does not significantly impact performance. Therefore, to
speed up computations, we select the question qt uniformly at
random. However, actively selecting the word set does signif-
icantly improve the performance. Given the combinatorially
large number of possible sets

(|X |
|S|
)

over which to maximize,
exhaustive optimization is computationally prohibitive. To
mitigate the computational burden, we greedily aggregate a
single word

s = argmax
s∈X

H

(
1

N

N∑
n=1

[
xt, yt

∣∣∣θ̂n, qt, {S, s}
])

− 1

N

N∑
n=1

H
(
xt, yt

∣∣∣θ̂n, qt, {S, s}
)

(7)

to the set until we reach size |S|. Lines 5 through 10 in
Algorithm 2 summarize the implementation of the active
learning heuristic.

IV. EMPIRICAL RESULTS
We empirically validate Algorithm 2. We use the list of

most frequent words in the decade of the 2000s1 [18]. For
every word w, we simulate the implicit human score by
sampling from N (µw, σ

2
w), where µw and σ2

w are the mean
and variance of the valence score as given by the dataset
[18]. This simulation approach allows us to approximate
a realistic distribution of human sentiment scores for each
word, capturing the subjectivity between persons in valence
assessments.

Given a word w with embedding xw and a classifier
estimator θ̃, we claim the prediction sign(θ̃

T
xw) is accurate

when it matches its label sign(µw). To measure the estimator
accuracy, we consider the words with |P [Yw = 1] − 0.5| =
|
∫∞
0

fN (µw, σ
2
w) − 0.5| ≤ 0.1, where fN represents the

probability density function of a normal distribution. This
range is selected to avoid words that have a completely neu-
tral score, like “branch” or “mouth.” We focus on words with
stronger sentiment scores, for which the prediction accuracy
of our algorithm can be most meaningfully assessed.

1https://nlp.stanford.edu/projects/socialsent/



a) Accuracy vs. iteration for |S| = 4 b) Accuracy vs. neutrality gap for |S| = 4

c) Mean-Square Error (MSE) vs. iteration for |S| = 4 d) |S| Comparison

Fig. 3: Performance of Algorithm 2 with human data. All configurations are run with 10 different random initializations.
The solid lines represent the mean of among those experiments, while the shaded areas represent the standard error. Adding
word selection to the queries together with actively selecting the word set reduces the number of iterations needed to achieve
a good performance. The larger the word set, the greater the performance improvement is.

Figure 3a shows how the classification accuracy evolves
with the number of queries. While the estimator accuracy
increases by only asking the human for labels, incorporating
word selection increases the estimator accuracy much faster.
For example, to achieve an accuracy of 75% we would need
more than 2000 iterations when relying solely on labels,
while we only need around 700 iterations with qpos and
qneg. This represents a notable reduction of 65% in the
number of iterations needed, which we argue compensates
for the additional effort required in word selection. We
further improve the performance when we select the words
in S actively; to achieve the same 75% accuracy, only 500
queries are necessary. This highlights the effectiveness of the
method in reducing sample complexity.

We compare the estimated classifier after 2000 iterations
of Algorithm 2 to the MMSE classifier, the ground truth
classifier. As Figure 3b shows, the accuracy of the estimated
classifier and the ground truth is similar when evaluating
words at the polar ends of the valence spectrum, with high
δ. The accuracy gap increases as words become more neutral.
These words, which also present a challenge for human
annotators, are typically considered of lesser priority in the
realm of sentiment classification tasks due to their ambiguous
nature [30]. Our approach reduces the accuracy gap to the

ground truth classifier across the whole valence spectrum,
compared to the traditional approach of only querying for
the label.

In addition to the accuracy insights, Figure 3c depicts
the evolution of the distance of the estimator to the ground
truth as more queries are collected. Consistent with the
previously discussed trends, we observe an advantage when
incorporating word selection and active learning strategies.
Algorithm 2 facilitates a faster reduction in MSE, evidencing
not just an improvement in superficial accuracy metrics but
also a genuine enhancement in the estimator alignment with
the ground truth.

Figures 3a, 3b and 3c analyze the performance of Algo-
rithm 2 for |S| = 4. In Figure 3d we compare the effect of
the size of the word set. The larger the word set the human
chooses from, the more information the word selection has,
thus the faster the classifier is learnt.

Collectively, these results confirm the efficiency of Al-
gorithm 2, showcasing its applicability to the valence clas-
sification task. The integration of word selection alongside
traditional label requests allows for more nuanced and infor-
mative responses, enhancing the classifier’s learning process.
We demonstrate a significant reduction in the number of
iterations needed to achieve high classification accuracy.
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