

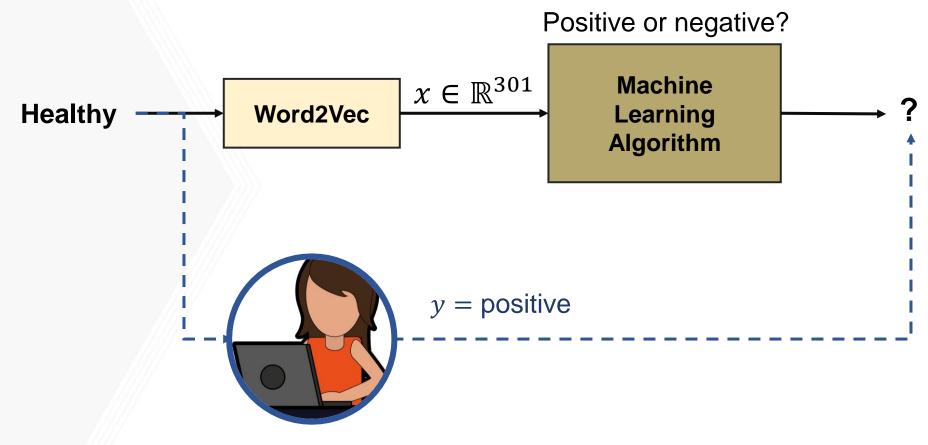
Enhancing Human-in-the-Loop Learning for Binary Sentiment Word Classification

Belén Martín-Urcelay, Christopher R. Rozell, Matthieu R. Bloch

December 17, 2024

1. Background Motivation

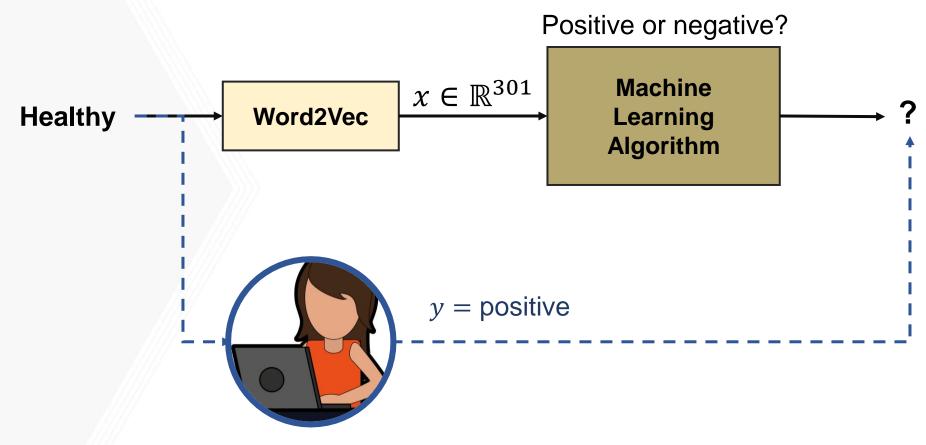
How can ML algorithms learn to classify words without exhausting human patience?



Supervised learning: training with labels from humans

1. Background Motivation

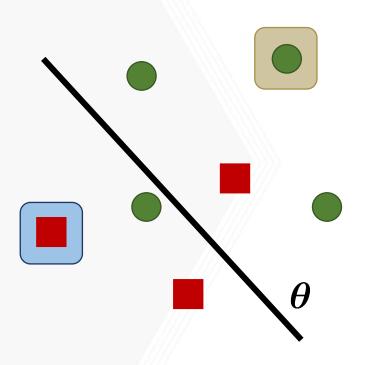
How can ML algorithms learn to classify words without exhausting human patience?



☐ Could we get **more information** from the human?

2. More Information

Queries must be <u>human</u> and <u>mathematically</u> interpretable



Positive word embedding

: Negative word embedding

 θ : Word Classifier

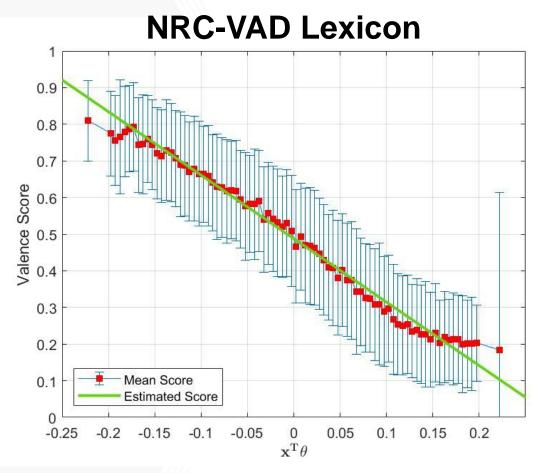
"Select the example that you find..."

- Query: "... most positive"

- Query: "... most negative"

Hypothesis: Human answers depend on the distance to the ground truth

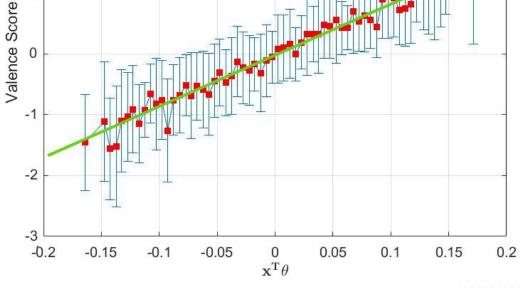
2. More Information Valence vs Distance to θ



$$\mathbb{E}\left[\operatorname{score}(\mathbf{x})|\boldsymbol{\theta}\right] = -1.73(\mathbf{x}^T\boldsymbol{\theta}) + 0.49$$

θ : Ground truth classifier

SocialNet Mean Score **Estimated Score**



 $\mathbb{E}\left[\text{score}(\mathbf{x})|\boldsymbol{\theta}\right] = 6.96(\mathbf{x}^T\boldsymbol{\theta}) - 0.09$

x: Word embedding

2. More Information Multinomial Logit Model

Queries must be human and mathematically interpretable

"Select and label the most positive/negative word"

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N, \boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_i,\boldsymbol{\theta})\right)}{\sum_{j=1}^N \exp\left(u(\mathbf{x}_j,\boldsymbol{\theta})\right)}$$
Likelihood

- Q1: Most positive

$$u(\mathbf{x}, \boldsymbol{\theta}) = \frac{a}{\sigma} \mathbf{x}^T \boldsymbol{\theta}$$

- Q2: Most negative

$$u(\mathbf{x}, \boldsymbol{\theta}) = -\frac{a}{\sigma} \mathbf{x}^T \boldsymbol{\theta}$$

Select and label the most positive word on this list:

Table, Healthy, Scary

x: Word embedding

 θ : Ground truth classifier

y: Word label (positive: 1, negative: 0)

u: Utility function (expected valence score)

2. More Information Multinomial Logit Model

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N, \boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_i,\boldsymbol{\theta})\right)}{\sum_{j=1}^N \exp\left(u(\mathbf{x}_j,\boldsymbol{\theta})\right)}$$
Likelihoo

How can we get the posterior? $p_{\boldsymbol{\theta}} = \mathbb{P}\left[\boldsymbol{\theta}|\{\mathbf{x}_t, y_t, q_t, \{\mathbf{x}_j\}_{j=1}^N\}_{t=0}^i\right]$

 \rightarrow Approximate θ as a multivariate Gaussian

Posterior over θ

x: Word embedding

q: Query u: Utility function (expected valence score)

 θ : Ground truth classifier

y: Word label

2. More Information Update Given Label

$$\mathbb{P}[y=1|\mathbf{x}] = \frac{1}{1+\exp(W(\boldsymbol{\theta}^T\mathbf{x}))}, \text{ with } W \in \mathbb{R}.$$

How do we update the posterior given the label?

Jaakkola and Jordan give a closed form approximation*

$$\sum_{\text{pos}}^{-1} = \Sigma^{-1} + 2 \frac{\tanh(\xi/2)}{4\xi} W^2 \mathbf{x}_i \mathbf{x}_i^T$$

$$\boldsymbol{\mu}_{\text{pos}} = \boldsymbol{\Sigma}_{\text{pos}} \left[\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \left(y_i - \frac{1}{2} \right) W \mathbf{x}_i \right]$$

$$\boldsymbol{\xi}^2 = W^2 \mathbf{x}_i^T \boldsymbol{\Sigma}_{\text{pos}} \mathbf{x}_i + W^2 (\mathbf{x}_i^T \boldsymbol{\mu}_{\text{pos}})^2$$

*Bayesian parameter estimation via variational methods – Jaakkola and Jordan, 2000

x: Word embedding

Prior: $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 θ : Ground truth classifier

y: Word label

Posterior: $\mathcal{N}(\boldsymbol{\mu}_{\mathrm{pos}}, \boldsymbol{\Sigma}_{\mathrm{pos}})$

2. More Information Update Given Word

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N,\boldsymbol{\theta}\right] = \frac{\exp\left(K\mathbf{x}_i^T\boldsymbol{\theta}\right)}{\sum_{j=1}^N \exp\left(K\mathbf{x}_j^T\boldsymbol{\theta}\right)}$$

How do we update the posterior given the word selected?

$$ELBO(q) = -\operatorname{KL}(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta})) + \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[K \mathbf{x}_s^T \boldsymbol{\theta} \right] - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \sum_{j=1}^{|\mathcal{S}|} \exp \left(K \mathbf{x}_j^T \boldsymbol{\theta} \right) \right]$$

$$\rightarrow KL(q||p) = \frac{1}{2} \left[\log \frac{|\Sigma_p|}{|\Sigma_q|} - d + (\boldsymbol{\mu_q})^T \Sigma_p^{-1} (\boldsymbol{\mu_q}) + (\boldsymbol{\mu_p})^T \Sigma_p^{-1} (\boldsymbol{\mu_p}) - 2(\boldsymbol{\mu_q})^T \Sigma_p^{-1} (\boldsymbol{\mu_p}) + tr \left\{ \Sigma_p^{-1} \Sigma_q \right\} \right]$$

$$\rightarrow \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[K \mathbf{x}_s^T \boldsymbol{\theta} \right] = K \mathbf{x}_s^T \boldsymbol{\mu}_q$$

$$\mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \sum_{j=1}^{|\mathcal{S}|} \exp\left(K\mathbf{x}_{j}^{T}\boldsymbol{\theta}\right) \right] \geq \log \sum_{j=1}^{|\mathcal{S}|} \exp\left(K\mathbf{x}_{j}^{T}\boldsymbol{\mu}_{q} + 0.5\mathbf{x}_{j}^{T}\boldsymbol{\Sigma}_{q}\mathbf{x}_{j}\right) \text{ [Braun and McAuliffe, 2007]}$$

2. More Information Multinomial Logit Model

$$\mathbb{P}\left[\mathbf{x}_{i}|\{\mathbf{x}_{j}\}_{j=1}^{N},\boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_{i},\boldsymbol{\theta})\right)}{\sum_{j=1}^{N}\exp\left(u(\mathbf{x}_{j},\boldsymbol{\theta})\right)}$$
$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^{T}\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

Variational inference

Posterior over θ

 θ : Ground truth classifier

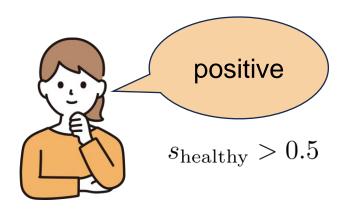
 \mathbf{x} : Word embedding y: Word label (positive: 1, negative: 0)

u: Utility function (expected valence score)

2. More Information Experiments

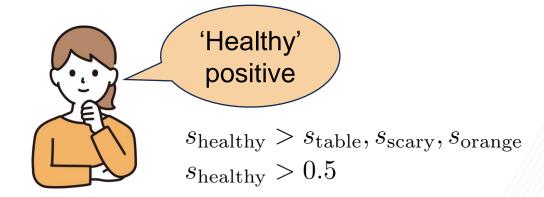
Label:

Label this word:
Healthy



Label + Word:

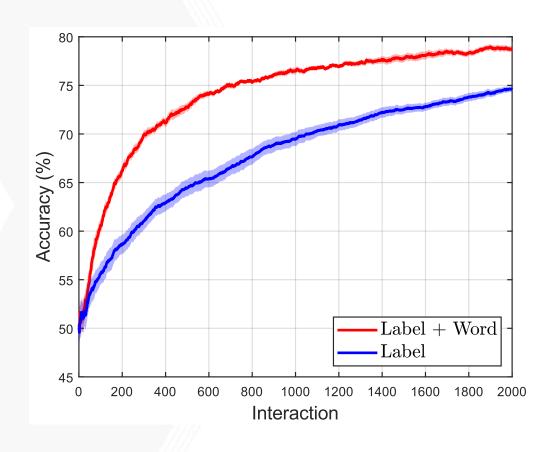
Select and label the most positive word?
Healthy, table, scary, orange

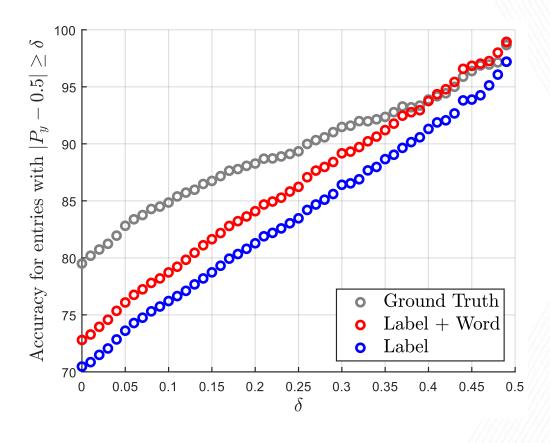


NRC-VAD Lexicon dataset:

Each word \mathbf{x} has a valence score mean $\mu_{\mathbf{x}}$ and variance $\sigma_{\mathbf{x}}^2 \to \mathrm{score}$: $s_{\mathbf{x}} \sim \mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2)$

2. More Information Empirical Results





2. More Information Theoretical Results

Under Assumptions

- 1. Word and label selected are independent of the history given the classifier $p(\mathbf{x}_t, y_t | \boldsymbol{\theta}, q_t, \mathcal{S}_t, \mathcal{F}_{t-1}) = p(\mathbf{x}_t, y_t | \boldsymbol{\theta}, q_t, \mathcal{S}_t)$
- 2. The label only depends on the word it is referring to $p(y_t|\mathbf{x}_t, q_t, \mathcal{S}_t) = p(y_t|\mathbf{x}_t)$
- 3. An answer always provides some information $I(\theta; X_t, Y_t | \mathcal{F}_{t-1}) \ge L > 0$

Simplified Theorem

The expected stopping time $T_{\epsilon} = \min\{t : \left| \boldsymbol{\Sigma}_{\boldsymbol{\theta}|\mathcal{F}_t} \right|^{1/d} < \epsilon\}$ is bounded as

$$\frac{d}{2} \frac{\log_2 \frac{2}{\pi e \epsilon}}{\log_2 2|\mathcal{S}|} \le \mathbb{E}[T_{\epsilon}] \le \frac{d}{2L} \log_2 \frac{e^4 d^2}{2\sqrt{2}(d+2)\epsilon} - 1.$$

where $\mathbf{x} \in \mathbb{R}^d$ and $\mathcal{S} = \{\mathbf{x}_j\}_{j=1}^{|\mathcal{S}|}$ are the candidate words.

2. More Information Theoretical Results

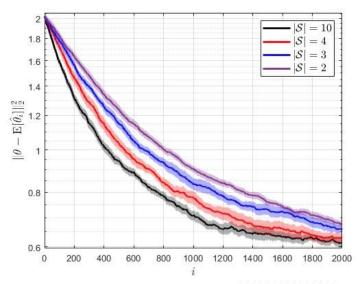
Simplified Theorem

The expected stopping time $T_{\epsilon} = \min\{t : \left| \boldsymbol{\Sigma}_{\boldsymbol{\theta}|\mathcal{F}_t} \right|^{1/d} < \epsilon\}$ is bounded as

$$\frac{d}{2} \frac{\log_2 \frac{2}{\pi e \epsilon}}{\log_2 2|\mathcal{S}|} \le \mathbb{E}[T_{\epsilon}] \le \frac{d}{2L} \log_2 \frac{e^4 d^2}{2\sqrt{2}(d+2)\epsilon} - 1.$$

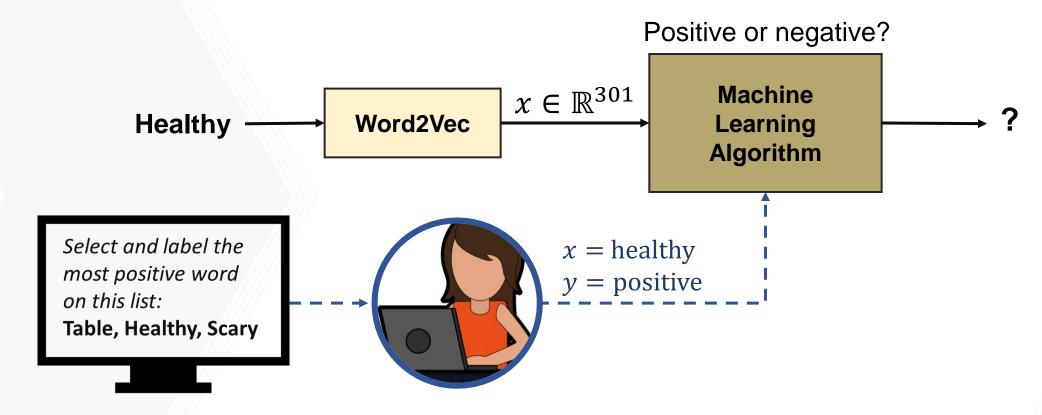
where $\mathbf{x} \in \mathbb{R}^d$ and $\mathcal{S} = \{\mathbf{x}_j\}_{j=1}^{|\mathcal{S}|}$ are the candidate words.

- \checkmark The number of question to ask the human to reach uncertainty $<\epsilon$ is on the order of $\log 1/\epsilon$
- \checkmark Related to the error $MSE_t = trace(\Sigma_{\theta|\mathcal{F}_t}) \ge d|\Sigma_{\theta|\mathcal{F}_t}|^{1/d}$
- ✓ The more words in the list, the faster the error decays



2. More Information Motivation

How can ML algorithms learn to classify words without exhausting human patience?

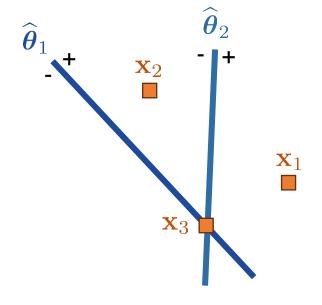


- ✓ Could we get more information from the human?
- ☐ Could we get the information **faster**?

3. Faster Active Learning Heuristic

- Instead of showing the humans a random list of words, could we select them in a smart way?

Example	$P[+ x,\theta=1]$	$P[+ x,\theta=2]$
x_1	0.99	0.99
x_2	0.99	0.01
x_3	0.5	0.5



Heuristic in AL:

$$\operatorname{argmax}_{\mathbf{x}} H \left(\mathbb{E}_{\boldsymbol{\theta}} \left[f_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right) - \mathbb{E}_{\boldsymbol{\theta}} \left[H \left(f_{\boldsymbol{\theta}}(\mathbf{x}) \right) \right]$$

- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise

3. Faster Active Word Selection

Heuristic:

$$S = \operatorname{argmax}_{S \in \{\mathcal{X}\}^k} H\left(\mathbb{E}_{\boldsymbol{\theta}}\left[\mathbf{x}_i, y_i \mid q, \boldsymbol{\theta}, \mathcal{S}\right]\right) - \mathbb{E}_{\boldsymbol{\theta}}\left[H\left(\mathbf{x}_i, y_i \mid q, \boldsymbol{\theta}, \mathcal{S}\right)\right]$$

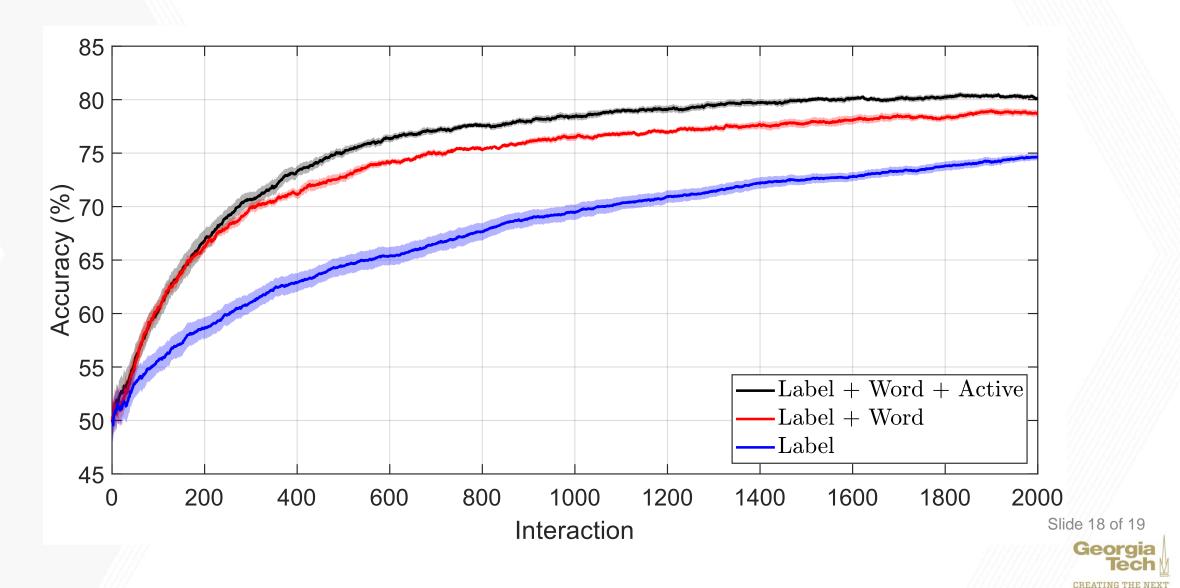
- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise

<u>Problem:</u> There exist combinatorically many sets $\binom{|\mathcal{X}|}{|\mathcal{S}|}$ to maximize over

Our Approach: Greedily select one word at a time

If $|\mathcal{X}| = 3500$ and $|\mathcal{S}| = 4$: $\binom{|\mathcal{X}|}{|\mathcal{S}|} \sim 10^{15}$ Galaxies $\sim 10^{12}$ If each computation 1ms, $t \sim 31,7000$ years

3. Faster Results



4. Summary

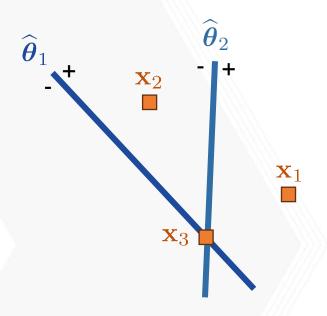
- 1. We introduce a novel human response model.
- 2. We speed up learning in sentiment classification
 - By combining label requests with word selection.
 - By <u>active</u> query selection.
- 3. We validate our approach
 - Theoretically: Bounds for expected stopping time.
 - Empirically: Experiments with human data.

Enhancing Human-in-the-Loop Learning for Binary Sentiment Word Classification

Belén Martín-Urcelay, Christopher R. Rozell, Matthieu R. Bloch

December 17, 2024

3. Faster Active Learning Heuristic



Example	$P[+ x,\theta=1]$	$P[+ x,\theta=2]$
x_1	0.99	0.99
x_2	0.99	0.01
x_3	0.5	0.5

$$x_1 \to H(0.99) - [0.5 (H(0.99) + H(0.99))] = 0.02 - 0.02 = 0$$

 $x_2 \to H(0.5) - [0.5 (H(0.01) + H(0.99))] = 1 - 0.02 = 0.98$
 $x_3 \to H(0.5) - [0.5 (H(0.5) + H(0.5))] = 1 - 1 = 0$

Heuristic in AL:

$$\operatorname{argmax}_{\mathbf{x}} H \left(\mathbb{E}_{\boldsymbol{\theta}} \left[f_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right) - \mathbb{E}_{\boldsymbol{\theta}} \left[H \left(f_{\boldsymbol{\theta}}(\mathbf{x}) \right) \right]$$

- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise

Slide 21 of 19

Georgia
Tech