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Use LLMs as a way of harnessing the information from
human text to train a reward model efficiently in RLHF.

4 Learning & . - Baselines
u Adaptive Systems Y] * Sentiment: We measure the sentiment of the human text feedback and
= - apply it as a reward for all states in the trajectory [1].

o . A : : * PbRL: We guery human evaluators for pairwise comparisons between
m ZUri Ch il trajectories [2].
 True: The agent receives the true reward from the environment.
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Framework Algorithm

I: Imput: number of human iterations /N
Predicted State level Text 2: Initialize Policy m and reward model 7.
Reward | Reward rewards 3: fori = 0to N do

Model 4:  Record trajectory following policy: t; + m;
5:  Query human for feedback: f; + t;
6:  Translate feedback to state-reward pairs with LLM:
s;.I; — f;.t;
7:  Update reward model: 71 + 74, {se.Te }ig
8:  Update policy: miy1 + i, Fig1
Agent Environment 9: end for

« An LLM translates human evaluations in the form of natural

language into state level rewards. Expe ri ments in M UJOCO

* These labeled states are used to train a reward model.
 The agent is then trained with standard RL algorithms. Goal: Move a two-jointed robot arm to target (red point)
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