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Abstract—Learning semantically meaningful image transfor-
mations (i.e. rotation, thickness, blur) directly from examples can
be a challenging task. Recently, the Manifold Autoencoder (MAE)
[1] proposed using a set of Lie group operators to learn image
transformations directly from examples. However, this approach
has limitations, as the learned operators are not guaranteed
to be disentangled and the training routine is prohibitively
expensive when scaling up the model. To address these limitations,
we propose MANGO (transformation Manifolds with Grouped
Operators) for learning disentangled operators that describe
image transformations in distinct latent subspaces. Moreover,
our approach allows practitioners the ability to define which
transformations they aim to model, thus improving the semantic
meaning of the learned operators. Through our experiments,
we demonstrate that MANGO enables composition of image
transformations and introduces a one-phase training routine that
leads to a 100× speedup over prior works.

Index Terms—Image transformations, disentangled represen-
tation, autoencoder, generative model.

I. INTRODUCTION

In many scientific domains, learning semantically mean-
ingful transformations in high-dimensional image datasets
can improve our understanding of complex patterns within
the underlying system. For example, in medicine, learning
image transformations between MRI scans of sick and healthy
patients can provide insights into disease mechanisms. To
ensure that these learned transformations are interpretable,
the resulting representations must be low-dimensional and
disentangled.

Although there exists numerous methods to learn a low-
dimensional representation of high-dimensional image mani-
folds [2]–[7], few works aim to model semantically meaning-
ful transformations between different points on this manifold.
Many latent variable models incorrectly assume Euclidean
transformations in the latent space, which can be inappropriate
when modeling certain transformations that require forming a
closed path, such as image rotations.

Recently, a new line of research [5], [8], [9] has imposed
structure by constraining image transformation onto a low-
dimensional manifold that can be learned. In particular, the
Manifold Autoencoder (MAE) [1] learns a dictionary of Lie
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group operators, referred to as transport operators, which can
be linearly combined to model possible transformations be-
tween latent points. To encourage the learning of semantically
meaningful and disentangled operators, the MAE optimizes an
objective function that promotes sparsity of the weights and
shrinkage of the operators.

Despite demonstrating improved extrapolation along trans-
formation paths, there are two critical limitations of the MAE
that prevent it from efficiently learning a disentangled latent
space. First, the MAE objective does not guarantee that
latent transformations are orthogonal which often results in
the learning of overlapping transport operators for distinct
transformations. Second, training MAE requires an expensive
three-phase procedure which becomes prohibitively expensive
when scaling up the model.

To address these limitations of MAE, we propose MANGO,
an approach for learning disentangled image transformation
Manifolds using Grouped Operators. We introduce the con-
cept of disentangled operators and enforce disentanglement by
constraining the action of each operator to a distinct latent
subspace. Furthermore, our method allows practitioners to
specify which semantically meaningful transformations they
aim to model. Additionally, we show that our disentangled for-
mulation enables composable latent transformations that can
generate realistic images, even for out-of-distribution transfor-
mations. Finally, we present a one-phase training strategy that
significantly improves computational efficiency, demonstrating
a 100× speedup over previous methods.

II. BACKGROUND AND RELATED WORK

A. Disentangled Representation Learning

Disentangled representation learning seeks to identify in-
dependent latent factors of variation that best describe the
dataset of interest. By doing so, disentangled models improve
the interpretability of the latent variables which encourages
the discovery of semantically meaningful structures. Various
techniques in deep learning literature have been developed
to promote the learning of disentangled latent spaces. For
example, β-VAE [10] applies strong regularization to the KL
divergence term in the evidence lower bound to encourage the
latent factor distribution to align with an isotropic Gaussian
prior. Similarly, FactorVAE [9] promotes disentanglement by



Fig. 1. Block diagram of MANGO. The model simultaneously learns a
transport operator A, where each block diagonal component represents a
semantically meaningful transformation, and an autoencoder that reconstructs
the transformed image.

directly penalizing the total correlation of the latent prior. Al-
ternatively, Generative Adversarial Networks (GANs), which
aim to learn generative models capable of producing samples
indistinguishable from real data by a discriminative classifier,
provide a different strategy to disentanglement. In particular,
InfoGAN [11] achieves disentanglement by maximizing the
mutual information between distinct latent subspaces. Other
line of work learns latent representations in an unsupervised
manner [12]–[14], where [13] minimizes the mutual informa-
tion between the content embedding and domain embedding
to encourage independence.

In general, however, these methods do not guarantee that the
learned latent factors will correspond to semantically mean-
ingful transformations, since they lack mechanisms to incorpo-
rate additional practitioner-provided information. Furthermore,
these models assume a Euclidean structure in the latent space,
which may be unsuitable for certain image transformations that
follow closed paths, such as rotations where transformations
are more appropriately modeled on SO(·) manifolds.

B. Transport Operators

Transport operators [15] offer a framework for modeling
continuous transformations between high-dimensional data
points in their original space, x ∈ RD, by defining trans-
formations to follow the flow of a linear dynamical systems,
ẋ = Ax. Given an initial point x0 and a linear operator
A ∈ RD×D, the trajectory of the transformation is given
by xt = expm(tA)x0 for all time t ∈ R, where expm is
the matrix exponential. Many works [16]–[20] further decom-
pose A into a linear combination of M transport operators
{Am}Mm=1 such that, A =

∑M
m=1 cmAm, where cm ∈ R is

a coefficient that determines the contribution of each operator
in a particular transformation. The set of all possible transport
operators define a Lie group [21] and can efficiently represent
the manifolds surface.

To encourage the learning of statistically independent trans-
port operators, [15] proposes to promote sparsity in the co-

efficients and shrinkage over the transport operators through
regularized optimization of A, c over the following objective,
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where γ and ζ are penalty weights for the operator shrinkage
and the amount of coefficient sparsity respectively. Since con-
currently learning both transport operators and the coefficients
can lead to training instability, prior works instead alternate
between updating A and c.

C. Manifold Autoencoder (MAE)

Learning transport operators in the high-dimensional data
space can be challenging numerically and computationally
expensive as a result of the matrix exponential. To address
this limitation, the manifold autoencoder (MAE) [1], [22]
proposes to learn transport operators in a low-dimension latent
space of an autoencoder. This is accomplished through a three-
phase training routine. First, an autoencoder is trained with
the basic reconstruction loss. Second, the algorithm fixes the
autoencoder weights and trains the transport operators (in
the latent space) using pairs of neighboring points with loss
function (1) (modified so that data x, x̃ ∈ RD are replaced
by latent representations z, z̃ ∈ RL). Third, the algorithm
prunes irrelevant operators and simultaneously fine-tunes the
autoencoder weights alongside the remaining transport oper-
ators. Although MAE improves the computational efficiency
of transport operators by learning transformations in the latent
space, it still relies on an expensive inner optimization proce-
dure as a result of the ℓ1 term in Equation (1). Additionally,
the learned latent transformations are not guaranteed to be
disentangled since the inferred active support set between
different transformation may use overlapping coefficients.

III. METHODOLOGY

This Section describes the main components of MANGO.
Figure 1 illustrates our approach.

A. Learning a Low-Dimensional Latent Manifold

For a given dataset {xi}Ni=1, let H := {hm,α : RD →
RD}Mm=1 be a set of continuous semantic transformations on
the data, where each hm is parameterized by a scalar α ∈
[−1, 1]. We train an autoencoder (with encoder and decoder
denoted f and g, respectively) to learn a low-dimensional
latent representation zi ∈ RL of the xi ∈ RD such that
the transformations of H are represented in the latent space
(approximately) by a structured class of manifolds.

B. Enforcing Disentangled Operators with Group Structure

Building on prior works [23], [24], we propose the following
definition of a disentangled representation for operators,

Definition 1. (Disentangled Operators) A set of operators
{Am}Mm=1 are disentangled if every pair of operators Ai and
Aj , where i ̸= j, satisfy ⟨Ai,Aj⟩ = 0.



Algorithm 1 MANGO Algorithm
1: Input: Randomly initialized operators {Am} and network

weights θ
2: Output: Learned transport operators {Am} and autoen-

coder weights θ
3: for t = 1, 2, . . . do
4: Sample data batch B = {x1, . . . ,xB}
5: Encode batch to obtain L = {z1, . . . ,zB}
6: for m = 1 to M do
7: α ∼ Unif([−1, 1])
8: Apply hm,α to B to obtain B̃m = {x̃1, . . . , x̃B}
9: Encode B̃m to obtain L̃m = {z̃1, . . . , z̃B}

10: Am ← Am − η1
∑B

i=1
∂Ei

∂Am

11: end for
12: θ ← θ − η2

∑B
i=1

∂Ei

∂θ
13: end for

For each transformation (indexed m = 1, . . . ,M ), we learn
the transport operator Am by attempting to minimize

Tm = ∥z̃ − expm(αAm)z∥22 + γ∥Am∥2F
where z := f(x) and z̃ := f(x̃) are the latent representations
corresponding to the original sample x and the transformed
sample x̃ := hm,α(x), respectively. This formulation encour-
ages the operator to define a continuous transformation path
in the latent space parameterized by α. We further constrain
Am to be a block-diagonal matrix with a different support for
each m, so that in aggregate the Am are disentangled. This
has the effect that the action of the mth transport map on z is
localized to a small, identifiable subset of coordinates.

C. Improving Training Efficiency with One-Phase Approach

Combining these two components, we obtain an overall loss
value for each pair of transformed points in the input space
(x, x̃) and their corresponding latent representations (z, z̃):

E = ∥x− g(f(x))∥22 + ∥x̃− g(f(x̃))∥22 + λTm, (2)

where the the first two terms encourage accurate reconstruction
of the original and transformed inputs, while the final term en-
sures that the block-diagonal transport operator Am transforms
one latent representation into the corresponding transformed
latent representation. The training methodology is summarized
in Algorithm 1.

IV. RESULTS

The MNIST handwritten digits dataset [25] is a widely
used benchmark for evaluating latent structures [1], [22] be-
cause it allows for straightforward assessment of semantically
meaningful transformations through standard image operations
(e.g., rotations, thickness, blurriness). We use MNIST to assess
MANGO’s ability to learn disentangled latent operators. As a
result of enforcing disentanglement, we demonstrate that we
can linearly combine the learned operators to perform multiple
semantic effects simultaneously. Additionally, we compare the
computational complexity of MANGO’s one-phase training

Fig. 2. Augmentations with various combinations of rotations and thickness
changes.

procedure with the MAE’s three-phase training procedure,
demonstrating a substantial improvement in training runtime.

A. Disentangled Operators are Composable

We empirically show that MANGO leverages the disen-
tangled manifold structure to learn semantically meaningful
operators on the MNIST dataset. Figure 2 shows augmented
images generated by applying two distinct transport operators.
One operator corresponds to a rotation transformation, while
the other increases the thickness of the digits. Note that the
reconstruction performance remains comparable to the base-
line autoencoders. MANGO provides the additional benefit of
interpretability, without a substantial trade-off in image quality.

Additionally, the operators learned by MANGO generalize
beyond the training dataset in two ways. First, they are able
to transport images further than the transformations observed
during training, showing robustness in extrapolation. Second,
MANGO is able to linearly combine the learned operators to
achieve complex transformations. For instance, as illustrated in
Figures 2 and 5, the model successfully generates augmented
images where the digits are both rotated and thickened simul-
taneously. This demonstrates the model’s ability to compose
transformations in a meaningful and interpretable manner, in
contrast with vanilla AEs where images lose their identity.

Figure 6 includes quantitative metrics for our MNIST
experiments. We measure 1) image reconstruction error to
evaluate the quality of the autoencoder and 2) transformed
image reconstruction error to assess the quality of the latent
transformation function. We report MSE and LPIPS [26]. For
the image transformation metric, we obtain latent traversals
from a vanilla autoencoder (AE) by fitting linear transfor-
mations on latent points and applying these transformations
iteratively to a reference image’s embedding. Although AE
slightly outperforms MANGO in reconstructing available im-
ages, it suffers when generating image transformations. In fact,
MANGO demonstrates a 60% improvement in transformed
reconstructions.

B. Grouped Operators Improve Training Time

The disentangled group structure of MANGO allows for
simpler backpropagation computations, leading to a faster
training process. During training for our MNIST experiments,



Fig. 3. MANGO achieves a neatly disentangled latent space. The figure shows the magnitude
of each coordinate in the first principal component for both models. MANGO exhibits stronger
concentration and alignment with learned operator coordinates.

Latent dimension L 16 32 64 128
MAE 6.90 20.52 72.54 319.50

MANGO 0.18 0.18 0.20 0.20

Dictionary Size M 2 4 6 8
MAE 8.98 12.17 14.50 19.92

MANGO 0.16 0.16 0.18 0.18

Fig. 4. Training runtimes (in seconds) per batch (of size
64) for fixed dictionary size M = 8 and for fixed latent
dimension L = 32.

Fig. 5. Comparison of image transformations. MANGO transformations retain
image identity unlike the AE.

Image Transformed Disent.
Models α MSE LPIPS MSE LPIPS MIG

AE
rotate 0.011 0.043 0.072 0.119 0.005
thick 0.007 0.020 0.093 0.082 0.034

rotate + thick 0.013 0.042 0.076 0.085 -

MANGO
rotate 0.015 0.051 0.027 0.057 0.031
thick 0.011 0.030 0.022 0.039 0.11

rotate + thick 0.018 0.053 0.040 0.067
Fig. 6. Quantiative metrics for the MNIST experiments. We compute scores
that quantify image reconstruction, image transformations, and disentangle-
ment. Lower is better for MSE and LPIPS while higher is better for MIG.

we observe that MANGO takes 12 minutes to converge while
the baseline MAE requires 138 hours to converge. The overall
algorithm takes 0.14% of the time to fully converge.

The autoencoders in both approaches are fully connected
neural networks with hidden layer sizes (256, 64, L (latent
space), 64, 256), leaky ReLU hidden layer activations, and
a sigmoid final layer activation. The first table in Figure 4
compares the runtimes of batch processing for different latent
dimensions L; while MANGO requires similar computation
time for all L, MAE quickly scales on order roughly L2.
This is due to the order L (with small coefficient) scaling
of the block diagonal MANGO transport matrices, whereas
the dense transport matrices of MAE scale on order L2. As
a result MANGO trains up to 1500× faster than MAE for
a latent space of size 128. The second table in Figure 4
compares the runtimes for different dictionary sizes M ; again,
MANGO requires similar computation time for all M while
MAE scales poorly. For reasonable L and M , the manifold-
relevant computations are nearly negligible compared to the

neural network computations, and as such we observe the
nearly constant runtimes for varying L and M on MANGO.
All experiments were run on an AMD Ryzen 3900 12 core
processor and NVIDIA GeForce RTX 2070.

C. MANGO Disentangles the Latent Space

To study MANGO’s effect on the latent space, we apply
principal component analysis (PCA) to latent representations
of image augmentations. We select 10 random images from the
dataset and generate 100 augmentations for each by varying
rotation and thickness. These augmentations are then fed to
both MANGO and the vanilla autoencoder for comparison.
We apply PCA to each set of augmentations and average
the results over the 10 sets. For both models, the explained
variance concentrates in the first few singular components,
with MANGO showing slightly better concentration. Crucially,
the large coordinates of MANGO’s leading eigenvector align
with the operator coordinates, indicating a disentangled latent
space. In contrast, the vanilla autoencoder’s energy is spread
across many coordinates. Figure 3 illustrates these results.

We also measure disentanglement quantitatively with the
MIG score [27]. the results in Figure 6 show that MANGO
achieves superior disentanglement compared to AE.

V. FUTURE WORK

MANGO provides a general framework which can in prin-
ciple apply to complex image transformations. As future work,
we plan on extending our experimental results to learning
image transformation in the Fruits-360 dataset [28], a public
dataset of images of rotated fruit. This dataset is signifi-
cantly more challenging than MNIST since our models must
represent 3D transformations given 2D snapshots. We train
on a small range of rotation parameters (α), and find that
the learned transport operator can in fact generate images
of rotated bananas for values outside the training set. These
preliminary results, shown in Figure 7, indicate that our
framework could be used for more challenging transformation
learning.

Fig. 7. Generated images of rotated bananas, for rotation angles not seen in
the training set.
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