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1. Background Motivation

Image transformations are everywhere

Data augmentation Image editing Virtual Reality

We want a method to learn to generate these transformations from data
U identity preserving

 disentangled

d interpretable

d with low computational cost Pgeoie
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1. Background Motivation

Manifold hypothesis: Within-class object variations lie on or near a low-dimensional, nonlinear
manifold and different objects are separated by low density regions. (Cayton, 2005; Narayanan
and Mitter, 2010; Bengio et al., 2013)
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1. Background Latent Spaces

Autoencoders (AE) transform high dimensional data in a low dimensional latent space
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However, Euclidean transformations in traditional latent spaces often lead to unrealistic samples

1 e ’ | y
|- M | (Zhixin et al, 2018)

Regularization procedure which encourages interpolated outputs to appear more realistic by fooling
a critic network. Berthelot et al, 2018.

X Identity not preserved
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1. Background Transport Operators

For every point pair (x, X) nearby on manifold, we define displacement as sparse decomposition

of Lie group operators:
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noise
latent transport

coefficients operators

Training:
L=1|%—expm(A)x|5+ M 3, |[AnlF + Azlle]s .
/ <"

* Model is trained using point pairs
Alternating between coefficient inference and gradient steps on

the transport operators

Culpepper & Olshausen, 2009, Sohl-Dickstein et al, 2017
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1. Background Manifold Autoencoder (MAE)

Q Learn transport operators in low-dimensional latent space of an autoencoder

Autoencoder Training Phase  Transport Operator Training Phase Fine-tuning Phase
Reconstruction Transport Operator |g— Reconstruction Transport Operator Reconstruction
| Loss Loss Loss Loss Loss |
A B 4 | 4
z 1
A : t
Transport
—P| Operator
o Layer
Z1

Encoder

Update weights from random initialization

Connor et al, 2020, 2021, 2023
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2. MANGO Transformation Manifolds with Grouped Operators

v/ Disentanglement

Q Force each transformation to occupy a different block with no overlapping support
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2. MANGO Transformation Manifolds with Grouped Operators

vV Interpretability

Q Supervision: Allow practitioners to describe transformations with examples

1) Rotation: eee =1 = HE—eXPm(ZmOéAl)ZHg‘H\Zm HAlﬂiﬂ
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2. MANGO Transformation Manifolds with Grouped Operators

Training:
L = ||lz—g(f (=) |3+E—g(f @) 13+ T, 7 (\Hf(i) —expm (Y, aAn) f(@)|]2 + A%, ||Am||§;)

Y
Reconstruction error m -th transport operaytor error (17,)
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3. Results Improved Training Time

v/ Fast Training

 Supervision leads to simple backpropagation — avoid costly L1

regularization.

* MNIST experiments:
« MAE (baseline)138 hours vs. MANGO (ours) 12 mins — 0.14% of the time

« MAE scales with L? while MANGO has nearly constant runtimes.

Latent dimension L 16 32 64 128
MAE 6.90 20.52 72.54 319.50
MANGO 0.18 0.18 0.20 0.20

Training runtimes (in seconds) per batch (of size 64)
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3. Results Operators are Disentangled

v/ Disentanglement
Rotation Thickness
MANGO
0.41 Vanilla AE
Operator Coordinates
@ 0.3
©
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0 10 15 20 25 30 0 5 10 15 20 25 30
Latent Dimension Latent Dimension
Learned transformations match the coordinates we were aiming for
MIG score (Chen et. al. 2018)
Vanilla AE | MANGO (ours)
Rotation 0.005 0.031 Side 1 of 16
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Generalization Beyond Training Dataset

vV Interpretability (thickness

Out of distribution

1i3lshe

> (rotation

The learned operators are:
1. Capable of transporting images further than the transformations observed during training Side//2 of 16
2. Composable to achieve complex transformations.




Image Reconstruction

v/ Identity preserving

Reference Transformed Reference

Rot: -30°
Thick: 0 60% improvement in transformed

-15 0° 15 30 45
0.1 0.2 0.3 0.4 0.5
. {-- : reconstructions
Ground Truth S o) 5 h ;" Transformed

AE with r Models Qo MSE LPIPS

Wi L

Linear Traversal .; n H B B rotate 0.072 0.119
AE thick 0.093 0.082

rotate + thick0.076 0.085
rotate 0.027 0.057
MANGO thick 0.022 0.039

rotate + thick0.040 0.067
(lower is better)
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3. Results Image Reconstruction
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4. Summary & Future Work

Training set: Bananas in Fruit 360 dataset with o« € [—0.25, 0.25]

Generated images of rotated bananas, for rotation angles not seen in the training set:
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MANGO (transformation Manifolds with Grouped Operators)
Method to learn to generate image transformations from data

v ldentity preserving

v Disentangled: Enables composition of image transformations

v Interpretable: Practitioners define which transformations to model
v With low computational cost: 100x speed up in training time
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