

MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators

Brighton
Ancelin*

Yenho
Chen*

Alex Saad-
Falcon*

Peimeng
Guan*

Chiraag
Kaushik*

Nakul
Singh*

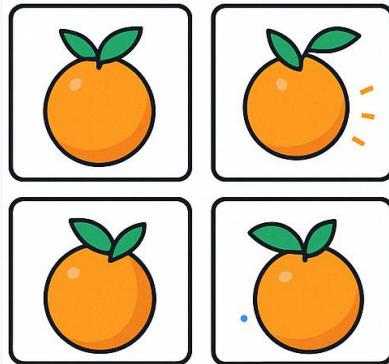
Belen Martin-
Urcelay*
(speaker)

SampTA - July 29, 2025

*Alphabetical order

1. Background Motivation

Image transformations are everywhere



Data augmentation

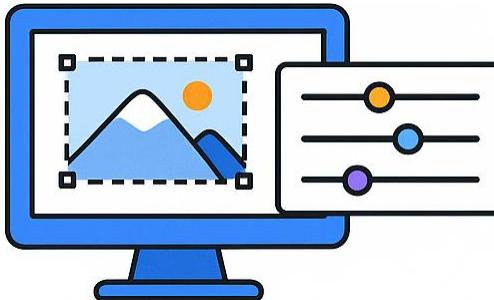


Image editing

Virtual Reality

We want a method to learn to generate these transformations from data

- identity preserving
- disentangled
- interpretable
- with low computational cost

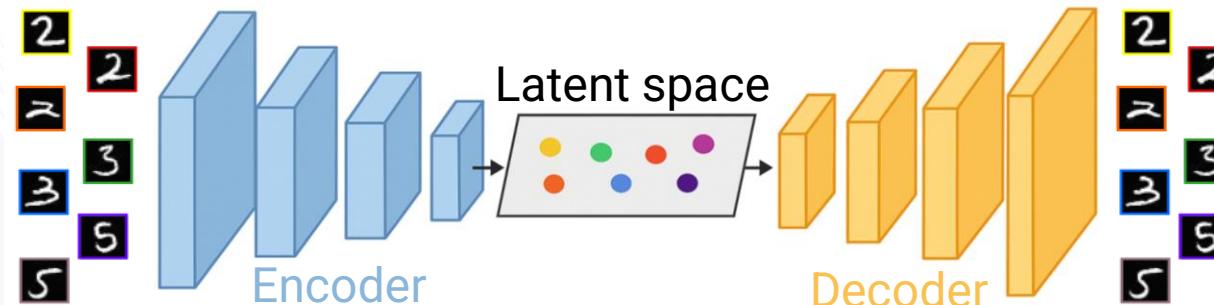
1. Background Motivation

Manifold hypothesis: Within-class object variations lie on or near a low-dimensional, nonlinear manifold and different objects are separated by low density regions. (Cayton, 2005; Narayanan and Mitter, 2010; Bengio et al., 2013)

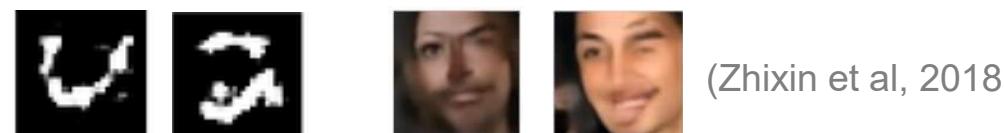
Connor et al. 2021

1. Background Latent Spaces

Autoencoders (AE) transform high dimensional data in a low dimensional latent space

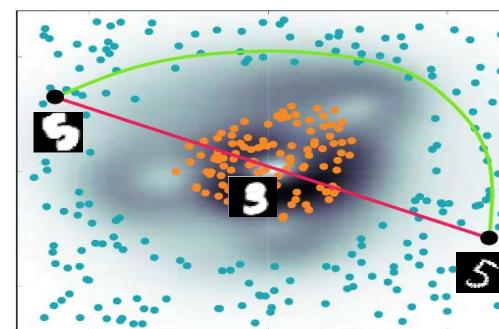


However, **Euclidean transformations** in traditional latent spaces often **lead to unrealistic samples**



Regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network. Berthelot et al, 2018.

✗ Identity not preserved



(Arvanitidis et al, 2018)

1. Background Transport Operators

For every point pair $(\mathbf{x}, \tilde{\mathbf{x}})$ nearby on manifold, we define displacement as **sparse decomposition of Lie group operators**:

$$\mathbf{A} = \sum_{m=1}^M \alpha_m \mathbf{A}_m$$

latent coefficients transport operators

$$\tilde{\mathbf{x}} = \text{expm}(\mathbf{A})\mathbf{x} + \epsilon$$

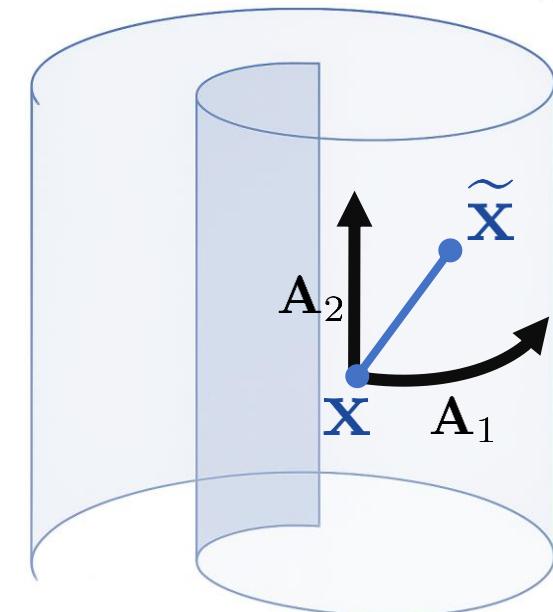
noise

Training:

$$L = \frac{1}{2} \|\tilde{\mathbf{x}} - \text{expm}(\mathbf{A})\mathbf{x}\|_2^2 + \lambda_1 \sum_m \|\mathbf{A}_m\|_F^2 + \lambda_2 \|\boldsymbol{\alpha}\|_1$$

- Model is trained using point pairs
- Alternating between coefficient inference and gradient steps on the transport operators

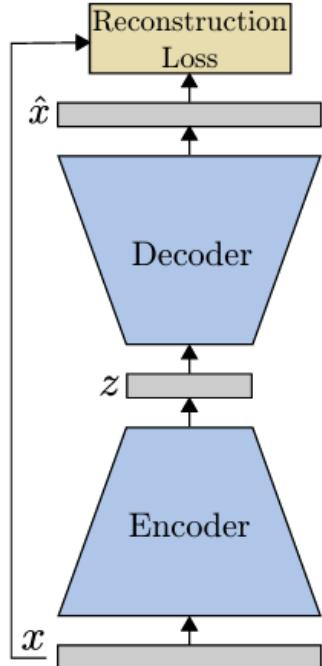
Culpepper & Olshausen, 2009, Sohl-Dickstein et al, 2017



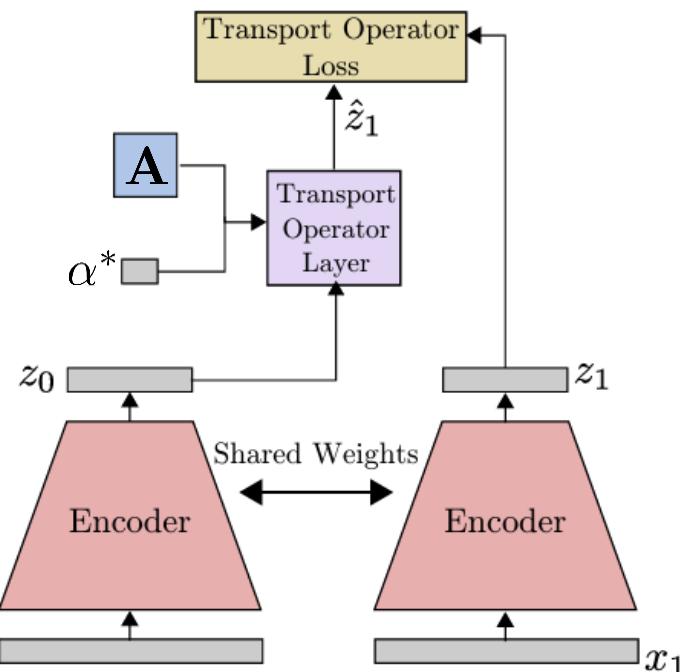
1. Background Manifold Autoencoder (MAE)

💡 Learn transport operators in low-dimensional latent space of an autoencoder

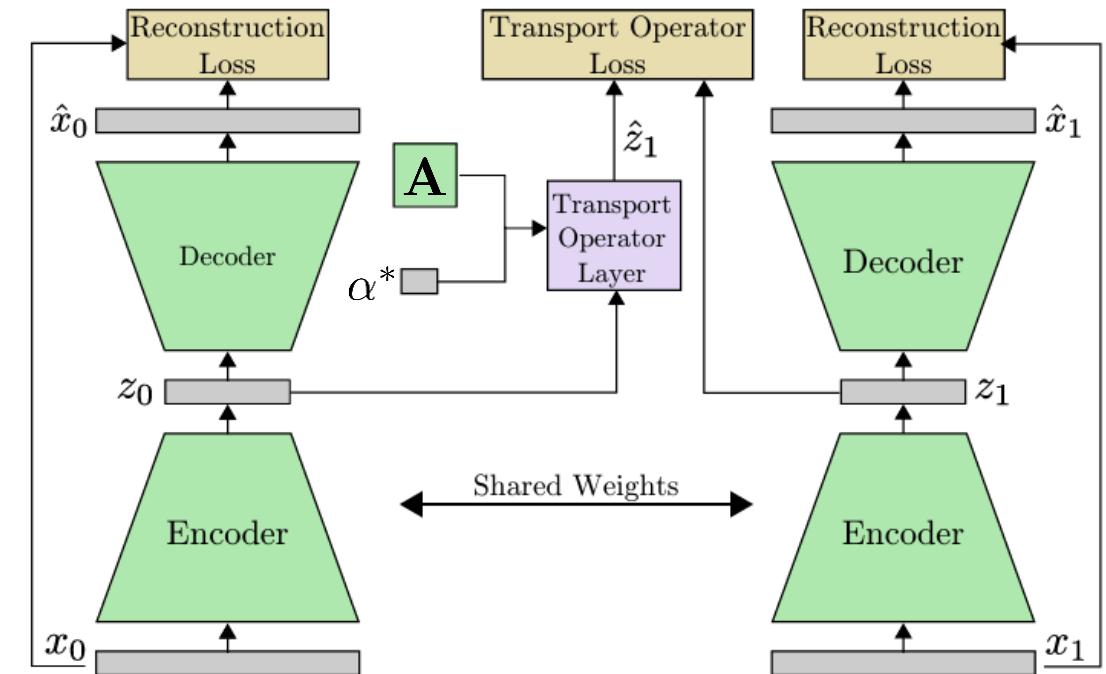
Autoencoder Training Phase



Transport Operator Training Phase



Fine-tuning Phase



Update weights from random initialization

✗ No guarantee latent operators are disentangled

✗ No guarantee latent operators are interpretable

Connor et al, 2020, 2021, 2023

✗ Expensive training procedure

2. MANGO Transformation Manifolds with Grouped Operators

✓ Disentanglement

💡 Force each transformation to occupy a different block with no overlapping support

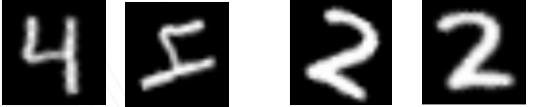
$$A_1 = \begin{bmatrix} \widehat{A}_1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & \widehat{A}_2 & \ddots & \vdots \\ \vdots & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \dots, \quad A_M = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \cdots & 0 & 0 \\ 0 & 0 & 0 & \widehat{A}_M \end{bmatrix}$$

$$\mathbf{A} = \sum_{m=1}^M \alpha_m \mathbf{A}_m = \begin{bmatrix} \alpha_1 \widehat{A}_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 \widehat{A}_2 & \ddots & \vdots \\ \vdots & \cdots & 0 & 0 \\ 0 & 0 & \alpha_M \widehat{A}_M & 0 \end{bmatrix}$$

2. MANGO Transformation Manifolds with Grouped Operators

✓ Interpretability

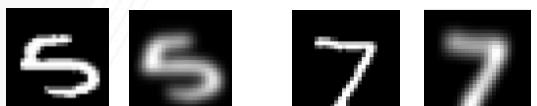
💡 Supervision: Allow practitioners to describe transformations with examples

1) Rotation:  ... $\rightarrow T_1 = \|\tilde{\mathbf{z}} - \text{expm}(\sum_m \alpha \mathbf{A}_1) \mathbf{z}\|_2^2 + \lambda \sum_m \|\mathbf{A}_1\|_F^2$

$\alpha = 0 \quad \alpha = 0.4 \quad \alpha = 0.2 \quad \alpha = -0.1$

2) Thickness: ... $\rightarrow T_2 = \|\tilde{\mathbf{z}} - \text{expm}(\sum_m \alpha \mathbf{A}_2) \mathbf{z}\|_2^2 + \lambda \sum_m \|\mathbf{A}_2\|_F^2$

$\alpha = 0.2 \quad \alpha = 0.7 \quad \alpha = 0.2 \quad \alpha = -0.2$

3) Blur:  ... $\rightarrow T_3 = \|\tilde{\mathbf{z}} - \text{expm}(\sum_m \alpha \mathbf{A}_3) \mathbf{z}\|_2^2 + \lambda \sum_m \|\mathbf{A}_3\|_F^2$

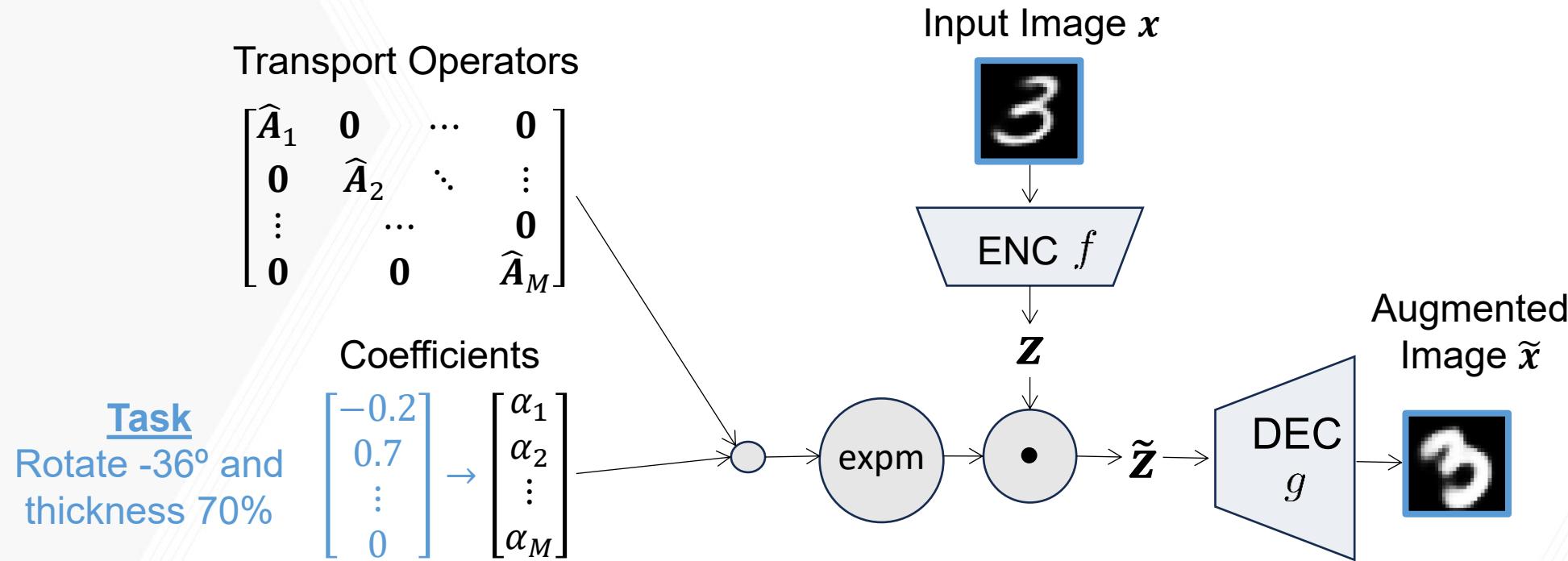
$\alpha = 0 \quad \alpha = 0.4 \quad \alpha = 0.1 \quad \alpha = 0.4$

⋮

2. MANGO Transformation Manifolds with Grouped Operators

Training:

$$L = \underbrace{\|\mathbf{x} - g(f(\mathbf{x}))\|_2^2 + \|\tilde{\mathbf{x}} - g(f(\tilde{\mathbf{x}}))\|_2^2}_{\text{Reconstruction error}} + \sum_{m=1}^M \gamma \left(\underbrace{\|f(\tilde{\mathbf{x}}) - \text{expm}(\sum_m \alpha \mathbf{A}_m) f(\mathbf{x})\|_2^2}_{m\text{-th transport operator error } (T_m)} + \lambda \sum_m \|\mathbf{A}_m\|_F^2 \right)$$



✓ Fast training

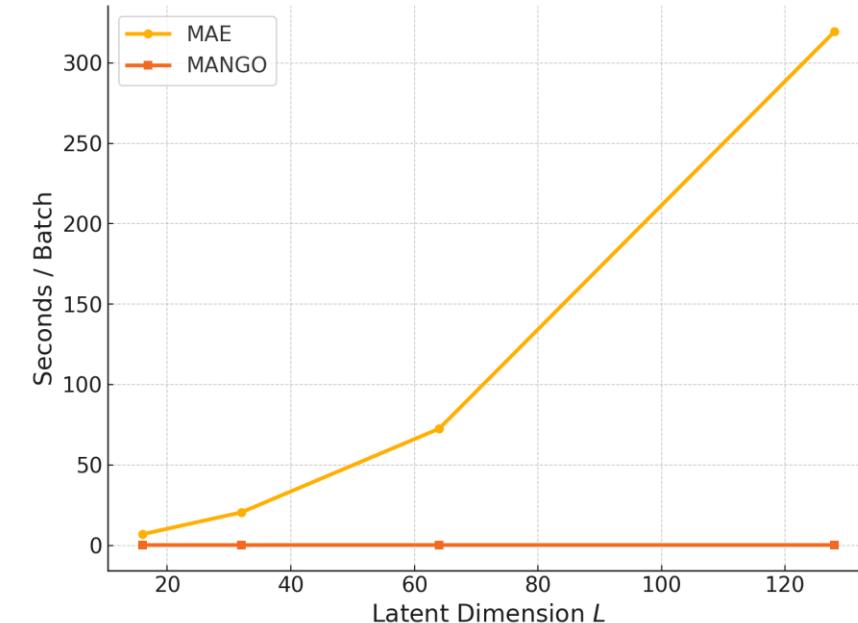
3. Results Improved Training Time

✓ Fast Training

- Supervision leads to simple backpropagation → avoid costly L1 regularization.
- MNIST experiments:
 - MAE (baseline) 138 hours vs. MANGO (ours) 12 mins → **0.14% of the time**
 - MAE scales with L^2 while MANGO has nearly constant runtimes.

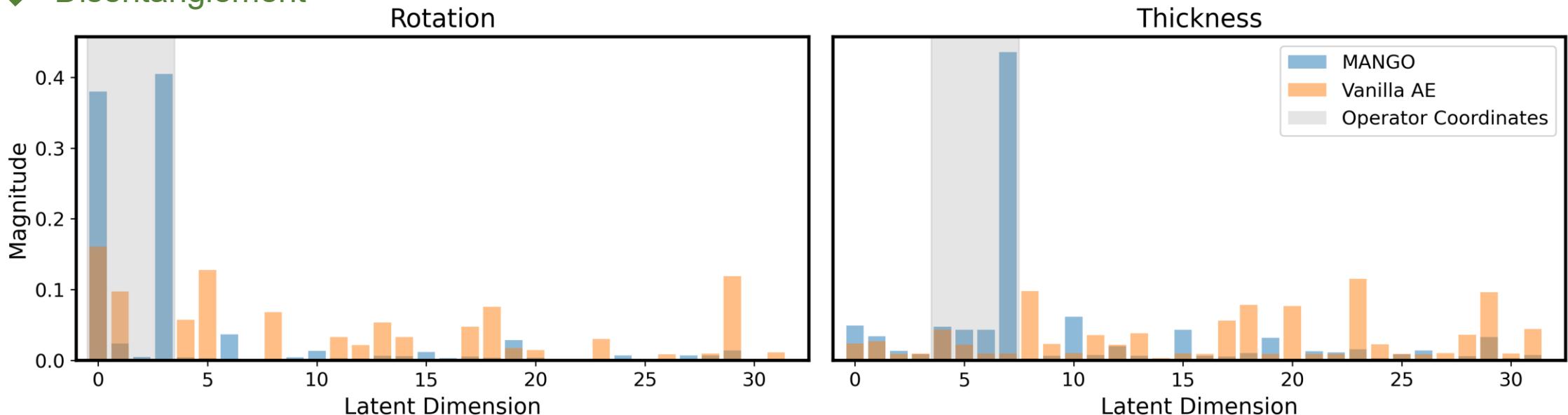
Latent dimension L	16	32	64	128
MAE	6.90	20.52	72.54	319.50
MANGO	0.18	0.18	0.20	0.20

Training runtimes (in seconds) per batch (of size 64)



3. Results Operators are Disentangled

✓ Disentanglement



Learned transformations match the coordinates we were aiming for

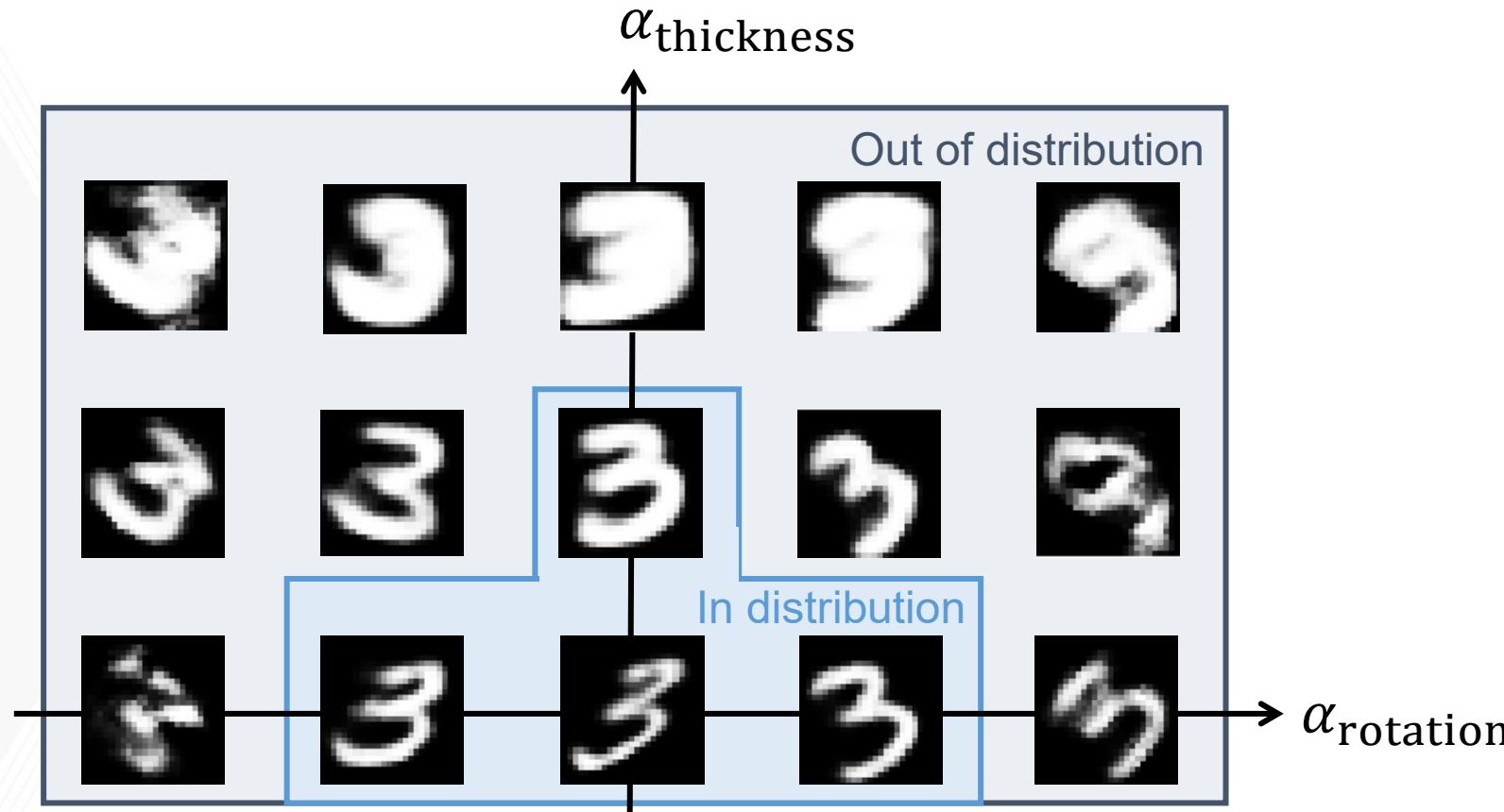
MIG score (Chen et. al. 2018)

	Vanilla AE	MANGO (ours)
Rotation	0.005	0.031
Thickness	0.034	0.11

(higher is better)

3. Results Generalization Beyond Training Dataset

✓ Interpretability



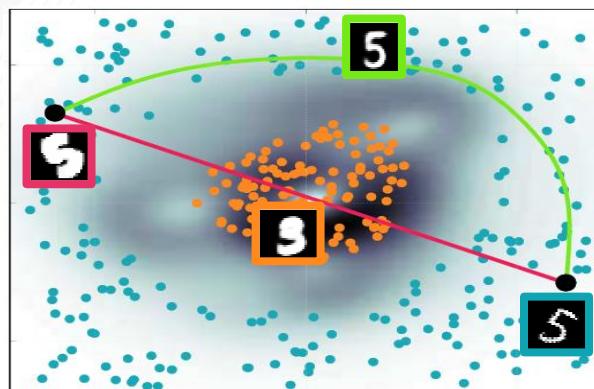
The learned operators are:

1. Capable of transporting images further than the transformations observed during training
2. Composable to achieve complex transformations.

3. Results Image Reconstruction

✓ Identity preserving

	Reference			Transformed			Reference		
	Rot:	-30°	-15°	0°	15°	30°	45°		
	Thick:	0	0.1	0.2	0.3	0.4	0.5		
Ground Truth									
AE with Linear Traversal									
MANGO									



60% improvement in transformed reconstructions

Models	α	Transformed	MSE	LPIPS
AE	rotate	0.072	0.119	
	thick	0.093	0.082	
	rotate + thick	0.076	0.085	
MANGO	rotate	0.027	0.057	
	thick	0.022	0.039	
	rotate + thick	0.040	0.067	

(lower is better)

3. Results Image Reconstruction

4. Summary & Future Work

Training set: Bananas in Fruit 360 dataset with $\alpha \in [-0.25, 0.25]$

Generated images of rotated bananas, for rotation angles **not seen in the training set**:

$\alpha = -0.5$

$\alpha = -0.62$

$\alpha = -0.75$

$\alpha = -0.88$

$\alpha = -1$

4. Summary & Future Work

MANGO (transformation **Manifolds** with **Grouped Operators**)

Method to learn to generate image transformations from data

- ✓ Identity preserving
- ✓ Disentangled: Enables composition of image transformations
- ✓ Interpretable: Practitioners define which transformations to model
- ✓ With low computational cost: 100x speed up in training time

MANGO: Learning Disentangled Image Transformation Manifolds with Grouped Operators

Brighton
Ancelin*

Yenho
Chen*

Alex Saad-
Falcon*

Peimeng
Guan*

Chiraag
Kaushik*

Nakul
Singh*

Belen Martin-
Urcelay*
(speaker)

SampTA - July 29, 2025

*Alphabetical order