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Abstract. We revisit the framework of online machine teaching, a special case of active learning in which a5
teacher with full knowledge of a model attempts to train a learner by adaptively presenting examples.6
While online machine teaching example selection strategies are typically designed assuming omni-7
science, i.e., the teacher has absolute knowledge of the learner state, we show that efficient machine8
teaching is possible even when the teacher is uncertain about the learner initialization. Specifically,9
we consider the case of learners that perform gradient descent of a quadratic loss to learn a linear10
classifier, and propose an online machine teaching algorithm in which the teacher simultaneously11
learns the learner state while teaching the learner. We theoretically show that the learner’s mean12
square error decreases exponentially with the number of examples, thus achieving a performance13
similar to the omniscient case and outperforming two stage strategies that first attempt to make14
the teacher omniscient before teaching. We empirically illustrate our approach in the context of a15
cross-lingual sentiment analysis problem.16
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1. Introduction. The size of datasets used in modern machine learning has grown many-19

fold over the last decade, making the training of models on entire datasets frequently im-20

practical [10], either because of the associated training time, training cost or incurred energy21

consumption and environmental cost. To circumvent these constraints, it is now common to22

only train models on a subset of examples. Using naive data selection strategies, such as ran-23

domly sampling a dataset, typically requires more examples than intentional strategies, such24

as active learning, by which the machine learning algorithm adaptively requests the labels of25

certain data points from a large pool of unlabeled examples [26]. Active learning has been26

successfully applied to a wide variety of settings, such as natural language processing [33, 4],27

data embedding [29, 7] or source localization [19, 21]. Machine Teaching (MT) considers a28

variation of the setup in which a knowledgeable expert knowing the ground truth model, the29

teacher, selects the examples fed to the machine learning algorithm, the learner. The aim30

of machine teaching is to exploit the teacher’s knowledge and identify the smallest set of31

examples to train the learner [34].32

Machine teaching has proved useful in a variety of settings, ranging from an illustrative 1-33

Dimensional threshold classifier [35] to complex vocabulary learning platforms [30]. A crucial34

requirement in early machine teaching algorithms has been the need for consistent learners35

[8, 3], which directly discard all the hypotheses that do not agree with any training example.36
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Therefore, these algorithms do not perform well in the presence of noisy labels. The consis-37

tency requirement has been relaxed in recent literature [17, 16] by introducing the concept38

of omniscient teaching. An omniscient teacher possesses full knowledge of the learner, i.e.,39

it is able to observe the state and dynamics of the learner during training. Under certain40

smoothness assumptions, the selection of examples reduces to a constrained convex optimiza-41

tion problem, for which a greedy machine teaching algorithm as in [17] achieves an exponential42

speed-up compared to random example selection. Nevertheless the omniscience requirement43

may pose practical implementation challenges [8].44

First, we note that the initial state of an algorithm is often unknown. This is the case45

in adversarial attacks, such as training-state poisoning [12], in which attackers lack precise46

knowledge about the initial state of the targeted system, such as a spam filter. Unknown47

initial states also result from warm-starts [23], a technique by which pre-trained models are48

used to accelerate the learning process or transfer knowledge from related tasks. Second, we49

note that teacher and learner may operate in different feature spaces. For example, words may50

be embedded in different spaces for different languages and the mapping between language51

spaces may be unknown.52

An existing approach to address the lack of omniscience is learning for omniscience [18, 16],53

which consists in introducing a preliminary probing phase during which the teacher queries the54

learner until enough feedback is gathered to accurately approximate the learner initial state.55

Unfortunately, this strategy requires many interactions between the teacher and learner during56

which the learner does not improve its model.57

The present work aims to tackle the above limitations by developing an efficient machine58

teaching algorithm capable of boosting the convergence speed of learners even when the teacher59

is not fully omniscient. Our algorithm addresses the challenges related to unknown learner60

starting states and unknown orthogonal mappings between the learner and teacher feature61

spaces. Our main contribution is in realizing that jointly teaching the learner while estimating62

its parameters may offer significant and previously not identified gains. In particular:63

1. We develop a non-omniscient machine teaching algorithm for gradient descent learners64

of a quadratic loss with unknown initializations. We prove that our algorithm achieves65

an exponential speed up compared to random example selection, without an explicit66

probing phase to estimate the learner initialization. Additionally, the exponential67

convergence guarantees hold under unknown orthonormal mappings between learner68

and teacher.69

2. We draw connections between machine teaching and control theory. These connec-70

tions allow us to leverage well-studied techniques, such as Kalman filters and Riccati71

recursions, to obtain theoretical guarantees on learning performance.72

3. We empirically demonstrate the advantages of our framework over random sampling73

and probing based techniques, using the teaching of a binary sentiment classifier across74

languages as an example.75

2. Framework. We now detail the framework of the machine teaching problem and intro-76

duce simplifying assumptions to make analytical progress in the non-omniscient setting. As77

illustrated in Figure 1, let the learner be a machine learning model parameterized by θ̂. For78

instance, θ̂ could represent an effective decision boundary. Machine teaching aims to guide79
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Teacher Learner

Example Selector
(xi, yi) = argmin

x∈X ,y∈Y
E[error]

Learner Estimator
pi+1 = P[θ̂i+1|History]

Learner Update
θ̂i+1 = f(θ̂i,xi, yi)

Feedback
si = g(θ̂i+1, {xt}it=1)

xi, yi
θ̂i+1

si

pi

θ

p0

f, g

ground truth

learner prior

dynamics

Figure 1: Block diagram of the online machine teaching framework. The goal of the teacher
is to steer the learner towards the ground truth θ, while simultaneously learning about the
learner state θ̂i+1.

the learner’s learned parameter, θ̂, towards the ground truth, θ. Let the teacher be an entity80

with knowledge of the ground truth θ and selecting the examples presented to the learner.81

At each time-step i, the teacher first presents an example and label pair (xi, yi) from a prede-82

termined pool (X ,Y) to the learner. The learner then uses the example to update its model83

θ̂i+1 = f(θ̂i,xi, yi) for some known function f . The learner may also provide some feedback84

with information about its current state to the teacher si = g(θ̂i+1, {xt}it=1), where g is some85

known function. In the case of an omniscient teacher this feedback provides the exact learner86

state.87

Although we assume that the teacher knows the function f that the learner uses to update88

its state, we emphasize that the teacher is not omniscient. Namely, the teacher does not89

know the starting point of the learner, θ̂0. Instead, we assume the teacher starts with a90

prior Gaussian probability distribution p0 for θ̂0. We shall also consider the case in which the91

teacher and learner do not share the same feature spaces: when the teacher selects an example92

x, the learner observes x̂ = G(x), where G is an unknown orthonormal mapping between the93

teacher and learner feature spaces.94

For analytical tractability, we restrict our attention to a learner that performs gradient95

descent to minimize the quadratic loss l(θ̂) := 1
2∥θ̂

T
x − y∥22. At each iteration the learner96

updates its state according to97

(2.1) θ̂i+1 = θ̂i − τ
(
θ̂
T

i xi − yi

)
xi,98

where τ ∈ R+ is the learning rate, assumed known to the teacher. We denote the maximum99

norm of the states by P , i.e., maxi ∥θ̂i∥22 ≤ P . We specifically look at teaching a linear binary100

classifier θ, s.t. ∥θ∥22 ≤ P . The classifier labels any example x ∈ X as y = sign(θTx). In101

principle, one could attempt to extend the linear classifier to non-linear problems by mapping102
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the original non-linear space into a higher-dimensional feature space in which the data is103

linearly separable, though this mapping is often hard to find in practice.104

We consider synthesis based teaching [17] by which the teacher may provide any example105

within a ball X : {x = [1, x1, ..., xd−1]
T ∈ Rd; ∥x∥22 ≤ Px}, together with any binary label in106

Y : {−1, 1}. Following standard practice, the first coordinate of the examples is set to 1 to107

allow for the parameter θ to account for both the direction and the offset of the hyperplane108

characterizing the classifier. The freedom to synthetically generate examples may lead to non-109

semantically-meaningful examples. To maintain interpretability, one can restrict the examples110

space X to data points that a teacher generates with a Variational AutoEncoder (VAE) trained111

from a pre-defined dataset of meaningful examples. This restriction forces synthetic examples112

to resemble the original training dataset, and thus be interpretable [24].113

3. Theoretical Guarantees. Existing online teachers base their example selection criteria114

on their knowledge of the learner state, which naturally prompts a number of questions: How115

does a teacher handle learner uncertainty? Are there any convergence guarantees in that116

case? We tackle these questions under two different settings: when the teacher receives no117

information from the learner, and when the teacher receives some noisy feedback from the118

learner at each iteration.119

3.1. Simultaneous Machine Teaching and Learning (SMTL) without Feedback. As120

a baseline, we first consider the situation in which the teacher receives no feedback from121

the learner. At each iteration, the teacher only communicates with the learner via a single122

example-label pair. We propose a greedy algorithm that chooses the example-label pair that123

most reduces the expected error of the learned parameter from one iteration to the next. The124

algorithm is motivated by the decomposition of the Mean-Square Error (MSE) of the learned125

parameter as126

E
[
∥θ̂i+1 − θ∥22 Hi

]
= E

[
∥θ̂i − τ

(
θ̂
T

i xi − yi

)
xi − θ∥22 Hi

]
127

= E
[
∥θ̂i − θ∥22 Hi

]
− τT (xi, yi,µi,Ci),128

where Hi := {p0, (xt, yt)
i
t=1} refers to the history of past examples and labels, as well as129

the prior distribution of θ̂0 known by the teacher. We set µi := E
[
θ̂i Hi

]
and Ci :=130

E
[
θ̂iθ̂

T

i − µiµ
T
i Hi

]
to represent the expectation and covariance matrix of the learner state,131

respectively. We let T (xi, yi,µi,Ci) = E
[
2(θ̂

T

i xi − yi)⟨θ̂i − θ,xi⟩ − τ(θ̂
T

i xi − yi)
2∥xi∥22 Hi

]
132

represent the expected improvement, i.e., how much the teacher expects the MSE to reduce133

from time-step i to i+ 1.134

The proposed policy selects the example-label pair that most reduces the error from one135

step to the next. Specifically, at time i, the teacher selects136

(3.1) (x̂i, ŷi) = argmax
x∈X ,y∈Y

T (x, y,µi,Ci).137

This manuscript is for review purposes only.



ONLINE MACHINE TEACHING UNDER LEARNER UNCERTAINTY 5

Lemma 3.1. The objective function in (3.1) is equivalent to138

T (x, y,µi,Ci) =
(
2− τ∥x∥22

)
xTCix︸ ︷︷ ︸

exploration

+2
(
θT − µT

i

) (
y − µT

i x
)
x︸ ︷︷ ︸

exploitation

−τ∥x∥22
(
y − µT

i x
)2︸ ︷︷ ︸

regularization

.(3.2)139

Lemma 3.1 follows from algebraic manipulations that are detailed in Section SM1.1. Note140

that T is a fourth degree polynomial with d unknowns: y ∈ {−1, 1} and all but the first141

coordinate of x. The unconstrained absolute maximum of T may be calculated with standard142

software such as Matlab’s fmincon function. Additionally, the teacher does not need to track143

the probability distribution of the learner. The teacher only needs to track the first and second144

order moments to compute equation (3.1) and select the appropriate example.145

The maximization of (3.2) implicitly accounts for the trade-off between estimating the146

learner state and teaching the ground truth to the learner. Under high uncertainty, corre-147

sponding to large values in the covariance Ci, the first term in (3.2) dominates. The first148

term is an exploration component that promotes examples aligned with the direction of high-149

est covariance, i.e., the examples that are most likely to decrease the teacher uncertainty150

about the learner state. On the other hand, the second term promotes examples that steer151

the estimated learner towards the ground truth, so the second term may be interpreted as an152

exploitation component. As the distance between the estimated learner state and the ground153

truth decreases, so does the relative weight of the exploitation term. The transition between154

phases focused on exploitation and exploration is further analyzed in subsection SM3.1, which155

examines the evolution of different sources of error. Lastly, the third term in (3.2) acts as a156

regularizer that discourages the norm of the gradient from being too large. This regularization157

term avoids abrupt and overly large updates in the learner state.158

After sending the example and label pair to the learner, the teacher updates its estimation159

of the learner state following the known dynamical model of the learner. The mean and160

covariance are updated as161

µi+1 :=E
[
θ̂i+1 Hi+1

]
= E

[
θ̂i − τ

(
θ̂
T

i xi − yi

)
xi Hi

]
= µi − τ

(
µT
i xi − yi

)
xi.162

Ci+1 :=E
[
θ̂i+1θ̂

T

i+1 − µi+1µ
T
i+1 Hi+1

]
= E

[
θ̂i+1θ̂

T

i+1 − µi+1µ
T
i+1 Hi

]
163

=E
[(

θ̂i − τ
(
θ̂
T

i xi − yi

)
xi

)(
θ̂i − τ

(
θ̂
T

i xi − yi

)
xi

)T
Hi

]
164

− E
[(
µi − τ

(
µT
i xi − yi

)
xi

) (
µi − τ

(
µT
i xi − yi

)
xi

)T
Hi

]
165

=Ci − τCixix
T
i − τxix

T
i Ci + τ2xT

i Cixixix
T
i .166

The first equality holds because, given the past history Hi, the teacher selects the next167

example-label pair in a deterministic way: in the absence of feedback, Hi+1 is completely168

determined by Hi. We outline this approach, which we call Simultaneous Machine Teaching169

and Learning (SMTL), in Algorithm 3.1.170

Next, we characterize the convergence rate that SMTL provides. We recall the guarantees171

for omniscient teaching as a baseline against the proposed algorithm.172
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Algorithm 3.1 SMTL

1: µ0,C0 ← p0
2: for i = 0, 1, 2, . . . do
3: Select example:

(xi, yi)← argmax
x∈X ,y∈Y

T (x, y,µi,Ci)

4: Update estimations about learner:
µi+1 ← µi − τ

(
µT
i xi − yi

)
xi

Ci+1 ← Ci − τCixix
T
i − τxix

T
i Ci + τ2xT

i Cixixix
T
i

5: end for

Theorem 3.2. [Adapted from [17, Theorem 4]] Consider a synthesis based omniscient173

teacher and a learner with updates given by (2.1). If ∀θ̂i,∃γ ∈ R with |γ| ≤
√
P

∥θ̂i−θ∥2
, ν(γ) ∈ R174

and y′ ∈ {−1, 1} s.t. 0 < τ
(
θ̂
T

i x
′ − y′

)
x′ ≤ ν(γ) < 1

τ for x′ = γ(θ̂i − θ), then,175

∥θ̂i − θ∥22 ≤ (1− τν)2i∥θ̂0 − θ∥22.176

Theorem 3.2 applies to the specific case of our framework in which ∀i µi = θ̂i and Ci =177

0. The theorem guarantees that an omniscient teacher teaches a classifier to a gradient178

descent learner exponentially fast with the number of examples, thereby offering a significant179

improvement compared to the linear convergence obtained when randomly selecting examples180

[22]. The auxiliary variables γ and ν(γ) are related to the convergence speed. The guarantees181

for an omniscient teacher provide a baseline for the MSE of non-omniscient teachers. The182

following theorem offers a convergence rate guarantee in the non-omniscient scenario without183

feedback.184

Theorem 3.3. Consider a synthesis based teacher following SMTL and a learner with up-185

dates given by (2.1). If ∀θ̂i, ∃γ ∈ R with |γ| ≤
√
P

∥θ̂i−θ∥2
, ν(γ) ∈ R and y′ ∈ {−1, 1} s.t.186

187

(3.3) 0 <

(
θ̂
T

i γ(θ̂i − θ)− y′ − 1

τγ

)2

≤ ν2 <
1

τ2γ2
,188

then,189

E
[
∥θ̂i − θ∥22 Hi−1

]
≤ (τγν)2iE

[
∥θ̂0 − θ∥22 H0

]
.190

Proof. We base our proof on [17, Theorem 4]. The expected evolution of the MSE from191

iteration i to iteration i+ 1 is described by192

(3.4) E
[
∥θ̂i+1 − θ∥22 Hi

]
= E

[
∥θ̂i − θ∥22 Hi

]
− τT (x̂i, ŷi,µi,Ci)193

where194

T (x̂i, ŷi,µi,Ci) = E
[
2
(
θ̂
T

i x̂i − ŷi

)
⟨θ̂i − θ, x̂i⟩ − τ

(
θ̂
T

i x̂i − ŷi

)2
∥x̂i∥22 Hi

]
195
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represents the expected MSE improvement at the i-th iteration when selecting the example-196

label pair (x̂i, ŷi). We analyze the objective function T at (x′ = γ(θ̂i − θ), y′), for some aux-197

iliary parameter γ ∈ R, to obtain the following lower bound:198

T
(
x′, y′,µi,Ci

)(3.5)

199

= E
[
2
(
θ̂
T

i γ(θ̂i − θ)− y′
)
⟨θ̂i − θ, γ(θ̂i − θ)⟩ − τ

(
θ̂
T

i γ(θ̂i − θ)− y′
)2
∥γ(θ̂i − θ)∥22 Hi

]
200

= γE
[
∥(θ̂i − θ)∥22

(
2
(
θ̂
T

i γ(θ̂i − θ)− y′
)
− τγ

(
θ̂
T

i γ(θ̂i − θ)− y′
)2)

Hi

]
201

= τγ2E

[
∥(θ̂i − θ)∥22

(
1

τ2γ2
−
(
θ̂
T

i γ(θ̂i − θ)− y′ − 1

τγ

)2
)

Hi

]
202

=
1

τ
E
[
∥(θ̂i − θ)∥22 Hi

]
− τγ2E

[
∥(θ̂i − θ)∥22

(
θ̂
T

i γ(θ̂i − θ)− y′ − 1

τγ

)2

Hi

]
203

≥ 1

τ
E
[
∥(θ̂i − θ)∥22 Hi

]
(1− (τγν)2),204

where the last inequality holds because of Assumption (3.3).205

The teacher selects the example-label pair that maximizes the expected improvement in206

MSE. By definition of argmax in (3.1), T (x̂i, ŷi,µi,Ci) ≥ T (x′, y′,µi,Ci),∀x′ ∈ X , ∀y′ ∈ Y.207

Combining this inequality with (3.5) and (3.4) we obtain208

E
[
∥θ̂i+1 − θ∥22 Hi

]
≤ E

[
∥θ̂i − θ∥22 Hi−1

]
− τT (x′, y′,µi,Ci)209

≤ E
[
∥θ̂i − θ∥22 Hi−1

]
− τ

1

τ
E
[
∥(θ̂i − θ)∥22 Hi−1

]
(1− (τγν)2)210

≤ (τγν)2E
[
∥θ̂i − θ∥22 Hi−1

]
211

≤ (τγν)2(i+1)E
[
∥θ̂0 − θ∥22 H0

]
,212

where the shifts in the history index hold because, without feedback, the example selection213

criteria is deterministic given the prior distribution of the learner p0 = H0.214

Corollary 3.4. Let the learning rate be 0 < τ < 2P
3 . Any learner with updates given by (2.1)215

converges exponentially with the number of examples when taught by a synthesis based teacher216

following the SMTL algorithm.217

Proof. To guarantee exponential convergence, it is sufficient to show that Theorem 3.3 is218

applicable for a learning rate τ ∈ (0, 2P3 ), i.e., that Assumption (3.3) holds. The following219
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three inequalities are sufficient conditions for Assumption (3.3) to hold:220

θ̂
T

i γ(θ̂i − θ) > y,(3.6)221

−θ̂
T

i γ(θ̂i − θ) +
2

τγ
> −y,(3.7)222

γ2θ̂
T

i (θ̂i − θ)− γy − 1

τ
̸= 0.(3.8)223

Recall that max{∥θ∥22,maxi ∥θ̂i∥22} ≤ P . Selecting y′ = −1 and 0 < γ < min
{

1
P ,

√
P

∥θ̂i−θ∥2

}
224

we show that all requirements (3.6-3.8) hold.225

We fulfill (3.6) because226

θ̂
T

i γ(θ̂i − θ) = γ∥θ̂i∥2
(
∥θ̂i∥2 − ∥θ∥2 cos

(
∠θ̂i,θ

))
> −γP > −1 = y,227

where the operator ∠·, · refers to the angle between two vectors. Next, we note that228

(3.9) −θ̂
T

i γ(θ̂i − θ) +
2

τγ
> −2γP +

2

τγ
> −2 + 2P

τ
.229

As we restrict the step-size, τ ∈ (0, 2P3 ), we may further lower bound (3.9) as230

−2 + 2P

τ
> −2 + 3 = 1 = −y,231

so (3.7) is also fulfilled.232

The left hand side in (3.8) is a non-degenerate quadratic equation with respect to γ, with233

at most two roots. As the interval (0, 1
P ) is continuous, it must contain non-root values, so234

there must exist a γ ∈
(
0,min

{
1
P ,

√
P

∥θ̂i−θ∥2

})
for which (3.8) also holds. Since (3.3) holds, we235

may directly apply Theorem 3.3 to conclude the proof.236

Theorem 3.3 shows that SMTL achieves an exponential behavior similar to omniscient237

teaching. To guarantee the desired exponential convergence of the learner to the ground truth238

with respect to the number of examples, we require E[∥θ̂0 − θ∥22 | H0] <∞. This requirement239

is a characteristic of most machine learning models, as in general, the starting point of learning240

algorithms is bounded. A sufficient condition for this to hold in our system is P < ∞. In241

addition, Corollary 3.4 asserts that the assumptions of Theorem 3.3 are fulfilled as long as242

the learning rate is not too large.243

Following SMTL, a gradient descent learner described by (2.1) needs O(log 1
ϵE[∥θ̂0 − θ∥22])244

example-label pairs to learn an ϵ-approximation of the ground truth model. This convergence245

rate is of the same order as the one achieved by omniscient teaching, while relaxing the246

assumption about knowledge of the exact learner initialization.247

The performance guarantees also hold in the case of rescalable pool based teaching with248

a rich enough example set. The approach and its analysis are detailed in Section SM2.249

Additionally, Lemma 3.5 below extends the problem to settings in which the example space250

of the learner suffers an unknown orthonormal transformation with respect to the example251

space of the teacher.252
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Lemma 3.5. Let G be an unknown orthonormal transformation describing the mapping253

from the feature space of the teacher to the learner. For every example x̃ selected by the254

teacher according to SMTL, the learner observes x̂ = G(x̃) and updates its state accord-255

ing to (2.1). If ∀θ̃i, ∃γ ∈ R with |γ| ≤
√
P

∥θ̃i−θ̃∥2
, ν(γ) ∈ R and y′ ∈ {−1, 1} s.t. 0 <256 (

θ̃
T

i γ(θ̃i − θ̃)− y′ − 1
τγ

)2
≤ ν2 < 1

τ2γ2 then,257

E
[∥∥∥θ̃i − θ̃

∥∥∥2
2

Hi−1

]
≤ (τγν)2(i+1)E

[∥∥∥θ̃0 − θ̃
∥∥∥2
2

H0

]
,258

where θ̃i = GT (θ̂i) and θ̃ represent the learner state and ground truth respectively, in the259

teacher feature space.260

Proof. Let G be an orthonormal transformation from the teacher feature space, whose261

elements are identified by ·̃, to the learner feature space, whose elements are identified by ·̂.262

Let GT denote the inverse mapping from the learner to the teacher feature space. By definition263

of an orthonormal transformation, G preserves the inner product, i.e., ⟨θ̂i, x̂⟩ = ⟨θ̃i, x̃⟩. Thus,264

we write the learner updates from iteration i to i+ 1 as265

θ̂i+1 = θ̂i − τ
(
θ̂
T

i x̂i − yi

)
x̂i = θ̂i − τ

(
θ̃
T

i x̃i − yi

)
G (x̃i) .266

The error metric is given by the expected squared distance between the ground truth θ̃267

and the teacher’s estimation about the learner state θ̃i+1 in the teacher feature space. As the268

mapping is invertible GT (G(x)) = x, we may decompose the MSE as269

E
[∥∥∥θ̃i+1 − θ̃

∥∥∥2
2

Hi

]
= E

[∥∥∥θ̃i − τ
(
θ̃
T

i x̃i − yi

)
GTG(x̃i)− θ̃

∥∥∥2
2

Hi

]
270

= E
[∥∥∥θ̃i − θ̃ − τ

(
θ̃
T

i x̃i − yi

)
x̃i

∥∥∥2
2

Hi

]
271

= E
[∥∥∥θ̃i − θ̃

∥∥∥2
2

Hi

]
272

+ E
[
−2
〈
θ̃i − θ̃, τ

(
θ̃
T

i x̃i − yi

)
x̃i

〉
+
∥∥∥τ (θ̃T

i x̃i − yi

)
x̃i

∥∥∥2
2

Hi

]
273

= E
[∥∥∥θ̃i − θ̃

∥∥∥2
2

Hi

]
274

− τE
[
2
(
θ̃
T

i x̃i − yi

)
⟨θ̃i − θ̃, x̃i⟩ − τ

(
θ̃
T

i x̃i − yi

)2
∥x̃i∥22 Hi

]
.(3.10)275

The SMTL algorithm selects the example-label pair in the teacher feature space as276

(x̃i, yi) = argmax
x∈X ,y∈Y

E
[
2
(
θ̃
T

i x̃− y
)
⟨θ̃i − θ̃, x̃⟩ − τ

(
θ̃
T

i x̃− y
)2
∥x̃∥22 Hi

]
,277

such that the MSE is greedily minimized. This is equivalent to the teacher’s behavior when278

the teacher and the learner share the same feature space. Therefore, we apply the inequality279

(3.5) to upper-bound (3.10) as280
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E
[∥∥∥θ̃i+1 − θ̃

∥∥∥2
2

Hi

]
≤ (τγν)2(i+1)E

[∥∥∥θ̃0 − θ̃
∥∥∥2
2

H0

]
.281

Lemma 3.5 shows that SMTL is invariant to rotations and reflections. Simultaneously282

teaching and learning provides an exponential speed up even when the learner and teacher do283

not share a representation space, but there exists an unknown orthonormal transformation284

between the teacher and learner feature spaces. This result extends the applicability of SMTL285

to various real-world problems, such as the cross-lingual sentiment analysis discussed in Section286

4.2.287

3.2. Simultaneous Machine Teaching and Learning with noisy Feedback (SMTL-F).288

We now analyze the situation in which the teacher receives some feedback from the learner.289

Without knowledge of the exact learner state, previous approaches [18] propose a dedicated290

probing phase in which the teacher exploits the feedback to obtain an accurate estimation of291

the learner state, then allowing the teacher to proceed as if it were omniscient. We show that292

the teacher may instead simultaneously learn the learner state and teach the ground truth to293

the learner, thereby, avoiding an explicit probing phase that improves the learner’s estimate294

without teaching.295

For analytical tractability, we consider the case in which the feedback from the learner is296

given by297

(3.11) si = θ̂
T

i+1xi + wi,298

where wi ∼ N (0, σ2) represents some random noise that accounts for imperfections in the299

communication channel between learner and teacher. The feedback is a noisy measurement300

of the learner certainty regarding the latest example classification. Specifically, the learner301

returns a noisy function of the distance and direction from the latest example to its current302

classifier. A large positive value of si suggests that the learner probably classifies the latest303

example xi as class 1. Similarly, a large negative value of si suggests that a classification304

of xi in class -1 is more probable. On the other hand, a value of si around 0 suggests that305

the example lies close to the learner classification boundary. Note that recovering the high306

dimensional true parameter θ̂i+1 ∈ Rd from this noisy scalar si ∈ R is not straightforward.307

At each time step, the teacher has access to two sources of information about the learner308

state. First, the teacher directly observes the noisy feedback. Second, the teacher knows309

the dynamical model of the learner and may predict its future state based on its current310

estimate. Kalman filtering is a well-known approach to optimally leverage these two sources311

of information.312

The proposed Simultaneous Machine Teaching and Learning algorithm with noisy Feed-313

back (SMTL-F) is summarized in Algorithm 3.2. The teacher interleaves the greedy example314

selection strategy given by (3.1), with a Kalman filter to achieve optimal tracking. Lines 4,315

5 and 6 of Algorithm 3.2 outline the computations required to track mean and covariance of316

the learner state.317
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Figure 2: Functional dependence graph showing causal relationships between the teacher
estimators about the learner µ,C, the true learner state θ̂, the ground truth θ, the
example-label pairs {x, y} and the feedback s. We observe that the system state Zi =
{xi, yi,µi+1,Ci+1, θ̂i+1} is Markovian and that the feedback is conditionally independent of
the past given the current state.

Theorem 3.6. Consider a learner that updates according to (2.1) and provides some feed-318

back according to (3.11). The estimator in SMTL-F then is the optimal estimator. Ad-319

ditionally, when τ ≤ 2
Px

, the covariance of the teacher estimation about the learner state is320

monotonically non increasing321

∥Ci+1∥∞ ≤ ∥Ci∥∞ ,322

where ∥C∥∞ = limk→∞ ∥Ck∥1/k.323

Proof. To prove Theorem 3.6, we must prove that the learner state estimator in SMTL-F324

is both optimal in the Bayesian sense and that it exhibits stable behavior with monotonically325

non increasing covariance.326

Optimality of the Estimator in SMTL-F327

We define the system state Zi = {xi, yi,µi+1,Ci+1, θ̂i+1}. The functional dependence328

graph in Figure 2 shows that the state Zi d-separates [5, Definition 2.14] the latest feedback329

si from the ground truth, past learner states and past feedback. Therefore, the current330

feedback is conditionally independent of the history given the system state331

P
[
si,θ, θ̂0,µ0,C0, {Zt}i−1

t=0 Zi

]
= P [si Zi]P

[
θ, θ̂0,µ0,C0, {Zt}i−1

t=0 Zi

]
332

= P [si Zi]P [Hi−1 Zi] .333

Figure 2 also shows that Zi d-separates Zi−1 from Zi+1, therefore, the state is Markovian334

Zi−1 → Zi → Zi+1. We also observe that any state is independent of past feedback given the335

previous state, so that336

P[Zi+1 {Zt, st}it=0] = P[Zi+1 Zi].337
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Combining the conditional independence with the fact that both learner state and feed-338

back are Gaussian random variables shows that the system follows a Gauss-Markov model.339

Consequently, the Kalman Filter is the Bayesian optimal filter [6]. Moreover, the distribu-340

tions are jointly Gaussian, so we only need to keep track of the mean and covariance matrices341

to obtain the optimal estimator of the learner state. SMTL-F implements the known closed342

form solution of the Kalman Filter for Gauss-Markov models [15]. Hence, SMTL-F obtains343

the optimal posterior probability density function of the learner state in a tractable way.344

Stability of the Estimator in SMTL-F345

Next, we show that the estimation of the learner state derived by SMTL-F is stable, in346

the sense that the uncertainty about the learner state is monotonically non increasing. The347

detailed proofs of all auxiliary lemmas are in Section SM1 of the supplemental material. We348

start by deriving the discrete-time algebraic Riccati recursion of the system349

Lemma 3.7. The dynamic Riccati equation describing the evolution of the teacher’s covari-350

ance about the learner state is given by351

(3.12) Ci+1 = FiCiFiTi,352

where Fi = I − xix
T
i is the Hermitian state transition matrix at the i-th iteration and Ti =353

I− (xT
i FiCiFixi + σ2)−1xix

T
i FiCiFi, where I represents the identity matrix.354

As a stepping stone towards proving the stability of SMTL-F, we analyze the spectral355

radius of the factors in the Riccati equation (3.12).356

Lemma 3.8. The spectral radius of Fi is 1 for τ ≤ 2
Px

.357

Lemma 3.9. The spectral radius of Ti is 1.358

Lastly, we take the submutiplicative matrix norm ∥ · ∥∞ := limk→∞ ∥ ·k ∥1/k on both sides359

of the Riccati recursion (3.12),360

(3.13) ∥Ci+1∥∞ ≤ ∥Ci∥∞∥Fi∥2∞∥Ti∥∞.361

Gelfand’s formula guarantees that ρ(A) = ∥A∥∞ [11], where the operator ρ(·) represent362

the spectral radius of a matrix. Applying this result together with Lemma 3.8 and Lemma 3.9363

to (3.13) we obtain364

∥Ci+1∥∞ ≤ ∥Ci∥∞ρ (Fi)
2 ρ (Ti) ≤ ∥Ci∥∞ ,365

which proves that ∥Ci∥∞ is monotonically non increasing.366

In the presence of feedback, the estimation of the learner state derived by SMTL-F is both367

optimal (it achieves the smallest expected error) and stable (the uncertainty about the learner368

state is monotonically non increasing).369

4. Empirical Performance. We now analyze the empirical performance of the algorithms370

in a synthetic 2D binary classification problem as well as in a real cross-lingual sentiment371

analysis problem. The code with the algorithms to replicate the experiments is available372

online1.373

1https://github.com/BelenMU/SMTL/tree/main
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Algorithm 3.2 SMTL-F

1: µ0,C0 ← p0.
2: for i = 0, 1, 2, . . . do
3: Select example:

(xi, yi)← argmax
x∈X ,y∈Y

T (x, y,µi,Ci)

4: Estimator - Predict:
µi+1|i ← µi − τ

(
µT
i xi − yi

)
xi

Ci+1|i ← Ci − τCixix
T
i − τxix

T
i Ci + τ2xT

i Cixixix
T
i

5: Estimator - Observe feedback:
si ← θ̂

T

i+1xi + wi

6: Estimator - Update estimation:
Ki+1 ← Ci+1|ixi(x

T
i Ci+1|ixi + σ2)−1

µi+1 ← µi+1|i +Ki+1

(
si − µT

i+1|ixi

)
Ci+1 ← (I−Ki+1x

T
i )Ci+1|i(I−Ki+1x

T
i )

T + σ2Ki+1K
T
i+1

7: end for

Figure 3: Synthetic dataset synth2 [32].

4.1. Synthetic Dataset. We first compare the performance of the SMTL and SMTL-F374

algorithms against the state of the art online machine teaching methods with a synthetic375

dataset. We generate a standard 2D binary dataset, shown in Figure 3, following the procedure376

outlined in [32].377

We validate the proposed online algorithms against the baseline omniscient teaching al-378

gorithm. Figure 4a shows the evolution of the learner error ∥θ̂i − θ∥2 as more examples are379

presented. We observe that the error decreases exponentially fast for both online algorithms380

as well as for the omniscient teacher, hence offering a significant improvement compared to the381

rate of traditional Stochastic Gradient Descent (SGD) in which examples are chosen randomly.382
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(a) MSE (b) Accuracy

Figure 4: Performance comparison between algorithms on the synthetic dataset. All online
MT algorithms achieve an exponential speed-up w.r.t. randomly selecting examples. Within
the exponential convergence of the MSE, the lower the noise level of the feedback the faster
the MSE decreases and the classification accuracy increases.

However, within the exponential rates, the omniscient teacher performs the best because it383

has the most information about the learner state.384

In the presence of feedback, tracking the learner is a good strategy to bridge the gap385

in performance between the omniscient teacher and the no-feedback case. The MSE of the386

SMTL-F is lower bounded by the MSE of omniscient teaching and upper bounded by the MSE387

of SMTL. As the feedback noise level decreases, SMTL-F approaches the omniscient teacher388

performance. In fact, as Figure 4a shows, under feedback with very low noise levels, SMTL-F389

rapidly achieves a precise estimation of the learner state, becoming a de facto omniscient390

teacher.391

Although we use the squared distance between the learner and the ground truth as a per-392

formance metric, the ultimate objective is to achieve a good classification accuracy. Figure 5393

shows how these two metrics are intertwined: a learner close to the ground truth, i.e., a low394

∥θ̂i − θ∥22, implies a good classification accuracy. The same relationship holds for different395

datasets, as analyzed in Section SM3.2. This justifies a posteriori why the proposed online396

algorithms focus on non increasing ∥θ̂i−θ∥22, as this is a good heuristic for classification accu-397

racy improvement. The relationship between both metrics is highly non-linear, meaning that398

an improvement on the learner state can strongly improve the classification accuracy when the399

state is far from the ground truth. Once the learner is sufficiently close to the ground truth,400

fine-tuning the learner’s state yields a much less significant change in classification accuracy.401

This behavior highlights the benefits of SMTL-F: for sufficiently low noise levels on the feed-402

back, teachers following SMTL-F are able to keep up with the omniscient teacher until a high403

enough accuracy is reached, at which point fine-tuning of the learner state no longer has a404

significant impact on classification accuracy.405
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Figure 5: Correspondence between classification accuracy and the learner’s distance to the
ground truth for different algorithms.

The graphs in Figure 5 and Figure SM3 show that all algorithms exhibit similar relation-406

ships between MSE and classification accuracy. This behavior suggests that there are implicit407

trajectories that all the online machine teaching algorithms approximately follow, and that the408

speed at which learners travel along the trajectories, measured in terms of number examples,409

strongly depends on the teacher’s knowledge about the learner. Said differently, the feedback410

provided by the learner does not seem to provide advantages in terms of trajectory, it only411

seems to affect how fast the learner reaches a low ∥θ̂i − θ∥22 value.412

Figure 4b summarizes the performance of the online algorithms, as measured by the clas-413

sification accuracy. Machine teaching outperforms random example selection. With more414

information about the learner, the classification accuracy of the learner improves faster with415

respect to the number of examples.416

We explore how learner initializations impact algorithm performance. We randomly ini-417

tialize 50 learners and compare the resulting variation in performance. The shaded regions in418

Figure 4 represent the standard error between initializations. Notably, online machine teach-419

ing not only outperforms random example selection but also enhances robustness as SMTL420

and SMTL-F exhibit significantly lower variance. This finding suggests that the proposed421

algorithms offer more consistent and stable results under different starting conditions, making422

them a favorable choice for various applications. Online machine teaching mitigates the im-423

pact of learner initializations on performance, and this effect is further diminished as feedback424

noise decreases.425

We further validate SMTL-F against the Learning for Omniscience (LfO) algorithm [18,426

16]. There are two distinct phases of the LfO algorithm corresponding to the probing and427

teaching phases. At first, the teacher focuses solely on decreasing its uncertainty about the428

learner state, i.e., (x̂, ŷ) = argminx∈X ,y∈Y ∥Ci∥2. As Figure 6a shows, at first teachers fol-429

lowing LfO reduce their uncertainty about the learner much faster than SMTL and SMTL-F.430
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(a) Uncertainty (b) MSE

Figure 6: Performance of the proposed online machine teaching algorithms against the state
of the art. SMTL-F outperforms LfO with σ2 = 10−3 by continuously updating its estimation
about the learner while teaching, avoiding an explicit probing phase.

However, getting an accurate estimation of the learner is done at the expense of teaching the431

ground truth. As Figure 6b shows, the MSE of the learner remains constant during the first432

iterations as the learner does not update its state immediately [18]. The teaching phase of433

the LfO algorithm starts once the uncertainty about the learner state is sufficiently low, i.e.434

∥Ci∥2 < δ, for a given threshold δ ∈ R+. Then, the teacher proceeds as if it were omniscient435

using its latest estimation.436

Figure 6b shows the performance of SMTL-F against LfO when σ2 = 10−3. We observe437

that having separate learning and teaching phases negatively impacts the overall performance438

of the algorithm. If the probing phase is too short, the teacher does not have an accurate439

estimation of the learner, so it is not able to teach it efficiently and the error decreases much440

slower than with SMTL-F, which continuously improves its estimation of the learner. On the441

other hand, a longer probing phase leads to an accurate estimation of the learner state but442

requires many iterations without teaching in which the error does not decrease. In practice,443

LfO with a long probing phase, i.e., low δ, is unable to catch up with the online algorithm that444

has been teaching all along. The proposed algorithm with noisy feedback avoids the costly445

probing phase, while still obtaining an accurate and ever-improving estimation of the learner446

state.447

These experiments confirm that jointly teaching the learner while estimating its parame-448

ters offers significant gains.449

4.2. Cross-lingual Sentiment Analysis. Language can be harnessed to understand the450

attitude of individuals [25]. Towards this goal, binary sentiment word classification aims to451

accurately label words according to their connotation as positive (e.g., love) or negative (e.g.,452

death). Traditionally, research on lingual sentiment analysis has focused on a few languages453

that have a large amount of annotated data [9]. To tackle this resource imbalance, cross-lingual454
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(a) MSE (b) Accuracy

Figure 7: Performance on the cross-lingual sentiment analysis problem. Online machine teach-
ing algorithms speed up the teaching. Adding process noise in the Kalman update reduces
the drop in performance caused by non-orthogonalities in the mapping between Spanish and
Italian words.

adaptation [1, 14, 28] aims to transfer the knowledge of languages with plentiful resources to455

languages with few resources. In this section, we apply SMTL and SMTL-F to tackle the456

cross-lingual sentiment analysis problem. We assume that the teacher has access to a linear457

sentiment classifier in the word-space created from a Spanish dictionary. The teacher aims to458

teach a learner working on the word-space created from an Italian dictionary to accurately459

classify Italian words.460

We use existing monolingual word embeddings2 [2] and normalize each word vector. Pre-461

vious work [31] empirically shows that the mapping of normalized word vectors between lan-462

guages is accurately described by an orthonormal transformation. Hence following Lemma 3.5,463

SMTL is suitable for cross-lingual knowledge transfer, even if the explicit mapping between464

the Spanish and Italian word embeddings is unknown.465

The teacher works in the Spanish word-embedding. At each iteration, the teacher selects466

the example-label pair according to (3.1) where X is the set of embedded Spanish words.467

We limit the examples to a finite dataset by selecting the 10000 most common words. This468

extension of synthesis-based teaching to a pool-based setting is detailed in Section SM2.1.469

We use Google Translate3 to translate each example from Spanish to Italian. The learner470

only sees the embedding corresponding to the translated word in the Italian vector space.471

Figure 7a shows the evolution of the MSE when a teacher working in the Spanish word space472

teaches a word sentiment classifier to a learner in the Italian word space. Machine teaching473

decreases the error significantly faster than random example selection.474

The performance further improves when the learner provides feedback about its state to475

2http://ixa2.si.ehu.es/martetxe/vecmap/es.emb.txt.gz
3https://translate.google.com
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the teacher. As orthonormal transformations preserve inner-products, we follow the framework476

described in Section 3.2. The feedback from the learner to the teacher is described as477

si = θ̂
T

i+1G (xi) = G−1
(
θ̂i+1

)T
xi + wi,478

where G is the unknown orthonormal mapping of word embeddings from the teacher to the479

learner language space. As the real mapping is not exactly an orthonormal transformation,480

we introduce wi ∼ N (0, σ2) to account for the deviations from the perfect orthonormality481

assumption.482

We estimate the noise level σ2 from the information exchanged between teacher and483

learner. The teacher samples N random pairs of words (x̃a, x̃b), the learner observes the484

corresponding word pairs in the learner word space (x̂a, x̂b), computes each pair’s inner prod-485

uct and transmits the resulting products to the teacher. The teacher then calculates the486

differences in inner-products between the pairs of words in the teacher language and the487

learner language. The variance among these differences becomes the estimator for σ2,488

σ2 ≈ 1

N

N∑
n=1

(
x̃T
a,nx̃b,n − x̂T

a,nx̂b,n

)2
,489

where (x̃a,n, x̃b,n) is the n-th pair of words sampled by the teacher. As Figure 7a shows,490

incorporating learner feedback with this estimator further improves the rate at which the491

MSE decreases.492

We also test the learner accuracy for classifying a preexisting sentiment lexicon in Italian4.493

The results are shown in Figure 7b. Online machine teaching algorithms are superior to494

random selection of examples. In fact, 50 examples selected by SMTL or SMTL-F achieve the495

same classification accuracy as 1000 randomly selected examples.496

4.2.1. Deviations from Orthogonal Mappings. As the mapping between languages is497

not perfectly orthonormal, the teacher model of the learner dynamical system is slightly498

inaccurate. This could lead to instances in which the teacher is certain of its learner state499

estimation, but this estimation is inaccurate. This would explain the dip in accuracy observed500

in Figure 7b. In this section, we further analyze this conjecture; i.e., we investigate how501

deviations from the orthonormality assumption in Lemma 3.5 affect the performance of SMTL-502

F. We also propose an extension of the algorithm to account for the deviations, and diminish503

the performance dips they cause.504

To empirically understand how SMTL-F performs under non-orthogonal transformations,505

we modify the synthetic experiments in Section 4.1. We create a new learner example space506

by rotating each example507

x̂i = Rotate(x̃i, ϕ+ zi),508

where the degrees of rotation ϕ+ zi are composed of a deterministic amount, unknown to the509

teacher, along with an additional random rotation. The deterministic rotation, denoted by ϕ,510

is sampled from a uniform distribution ϕ ∼ U(0, 2π) and remains constant for all examples.511

4https://www.kaggle.com/datasets/rtatman/sentiment-lexicons-for-81-languages
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On the other hand, the random rotation zi is sampled independently for each example from512

a Gaussian distribution zi ∼ N (0, z2) which adds an extra random degree of rotation to each513

instance.514

Figure 8 shows that as the examples deviate further from the perfect orthonormal trans-515

formation, a dip in accuracy appears. This behavior gives credence to our conjecture that the516

drop in performance in Figure 7b is caused by deviations from the assumption of orthogonal517

mapping between languages.518

Figure 8: Performance of SMTL-F for examples deviated byN (0, z2) from perfect orthonormal
mapping between teacher and learner feature spaces. Deviations lead to a performance dip.

The SMTL-F algorithm assumes a perfect knowledge of the dynamical system of the519

learner. However, the examples from the teacher to the learner space do not always experience520

the same rotation so, in practice, the teacher may not be able to exactly determine the521

evolution of the learner state. The teacher overcomes the estimation error when observing522

more feedback from the learner, which is consistent with previous works [20, 13] showing that523

interactivity mitigates the impact of imperfect knowledge and mismatches.524

Another approach is to account for the mapping imperfections by introducing process525

noise in the dynamical model of the learner. Let ri denote the difference between the teacher’s526

example mapped in a perfectly orthogonal way G(x̃) and the corresponding example in the527

learner space x̂; i.e., ri = x̂i −G(x̃i). Then, the evolution of the learner state from iteration i528
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to i+ 1 is given by529

θ̂i+1 = θ̂i − τ
(
θ̂
T

i x̂i − yi

)
x̂i =

(
I− τ x̂ix̂

T
i

)
θ̂i + τyx̂i530

=
(
I− τ(G(x̃i) + ri)(G(x̃i) + ri)

T
)
θ̂i + τyi(G(x̃i) + ri)531

=
(
I− τG(x̃i)G(x̃i)

T − τG(x̃i)r
T
i − τriG(x̃i)

T − τrir
T
i

)
θ̂i + τyi(G(x̃i) + ri)532

=
(
I− τG(x̃i)G(x̃i)

T
)
θ̂i + τyiG(x̃i)− τ

(
G(x̃i)r

T
i + riG(x̃i)

T + rir
T
i

)
θ̂i + τyiri533

= θ̂i − τ
(
θ̂
T

i G(x̃i)− yi

)
G(x̃i)−τ

(
G(x̃i)r

T
i + riG(x̃i)

T + rir
T
i

)
θ̂i + τyiri︸ ︷︷ ︸

vi

.534

From a control perspective, the deviations from perfect orthogonal mappings create unknowns535

in the dynamical system, these unknowns vi are random variables referred as process noise.536

Dealing with process noise is a known and well investigated problem in control theory537

[27, Chapter 7]. We leave the best modeling of this process noise for future work. For now,538

we model the deviations from orthogonality in a naive way by assuming that the noise is539

independent and identically distributed (i.i.d.) Gaussian, namely, vi
i.i.d.∼ N (0,Σv). Under540

this assumption, the covariance extrapolation for the Kalman update becomes541

Ci+1|i =
(
I− τ x̃ix̃

T
i

)
Ci|i

(
I− τ x̃ix̃

T
i

)T
+Σv.542

Despite the simplicity of the process noise model, we observe a significant improvement in543

performance. The dashed purple line in Figure 7b shows that assuming Gaussian process544

noise smooths the performance curve. We diminish the drop in performance in the cross-545

lingual experiment by accounting for the deviations from the orthogonal mapping between546

Italian and Spanish words with Gaussian process noise.547
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