
Published in Transactions on Machine Learning Research (01/2026)

From Words To Rewards:
Leveraging Natural Language For Reinforcement Learning

Belén Martín-Urcelay burcelay3@gatech.edu
Department of Electrical and Computer Engineering
Georgia Institute of Technology

Andreas Krause krausea@ethz.ch
Department of Computer Science
ETH Zurich

Giorgia Ramponi giorgia.ramponi@uzh.ch
Department of Computer Science
University of Zurich

Reviewed on OpenReview: https: // openreview. net/ forum? id= Gbx0pLANdf

Abstract

We explore the use of natural language to specify rewards in Reinforcement Learning with
Human Feedback (RLHF). Unlike traditional approaches that rely on simplistic preference
feedback, we harness Large Language Models (LLMs) to translate rich text feedback into
state-level labels for training a reward model. Our empirical studies with human participants
demonstrate that our method accurately approximates the reward function and achieves
significant performance gains with fewer interactions than baseline methods.

1 Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a powerful framework for solving complex decision-
making problems by training agents to maximize cumulative rewards through interactions with an environment.
RL has achieved remarkable success in a variety of domains, from games (Mnih et al., 2015) and robotics
(Kaufmann et al., 2023) to healthcare (Yu et al., 2021) and finance (Pendharkar, 2022). Central to the RL
paradigm is the concept of a reward function, which provides the agent with feedback on its actions and
guides its learning process.

Defining a suitable reward function in real-world applications is often difficult or impractical (Hadfield-Menell
et al., 2017), limiting the deployment of RL in scenarios where desired behavior is hard to specify precisely.
To address these challenges, Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017)
has emerged as a promising approach. Rather than relying on predefined reward functions, RLHF derives
a reward signal directly from human input, ensuring it better reflects human values and intentions. This
strategy has been especially effective in domains where human judgment is crucial for determining task
success.

While most RLHF approaches rely on comparing or ranking trajectories, humans naturally communicate
intent through more nuanced textual descriptions (Cherry, 1966). Shifting from comparison-based feedback
to textual input would allow for a richer expression of underlying goals (Metz et al., 2024). However, for such
text-based feedback to be useful in RL, it must be effectively translated into a suitable reward model for
planning. In this paper, we introduce a novel approach for learning reward models from natural language
feedback. We bridge this gap by employing Large Language Models (LLMs) to map expressive human text
into state-level labels, which we use to update a reward model. This allows the reward model to capture

1

https://openreview.net/forum?id=Gbx0pLANdf

Published in Transactions on Machine Learning Research (01/2026)

the context and subtleties of human preferences more effectively, leading to more robust and adaptable RL
agents. Our contributions are as follows:

• We propose an in-context learning approach using LLMs to map natural language feedback into labeled
state-level examples for training a reward model.

• We incorporate our reward modeling approach into an RLHF framework and validate its performance in a
Gridworld environment through experiments with 26 human participants and in continuous environments.

• We show that human feedback, especially when provided with guidelines, can proactively steer agents
toward unexplored high-reward states, avoiding common reward modeling challenges.

• Our method achieves strong performance with as few as 10 human interactions, outperforming preference-
based RL. In two environments (Gridworld and Rubik’s cube), we additionally observe settings where it
outperforms ground-truth reward baselines.

By harnessing human insights from textual comments, our method aims to bridge the gap between human
preferences and machine learning, paving the way for more adaptable and human-aligned RL.

2 Related Work

2.1 Preference Based Reinforcement Learning

Traditional RL relies on explicit reward functions to drive the learning process. When the reward function
is not known or difficult to construct, RLHF suggests we collect human feedback to model the reward. In
Preference Based Reinforcement Learning (PbRL) (Busa-Fekete et al., 2014; Christiano et al., 2017), human
oracles provide their preferences between pairs of trajectories. These preferences are used to train a reward
model, enabling the deployment of standard RL algorithms to find the optimal policy. Unfortunately, as
depicted in Figure 1, relying solely on comparisons misses out on valuable information about finer details of
the reward (Basu et al., 2018; Peng et al., 2024). We propose using natural language feedback to overcome
this limitation.

2.2 Learning from Natural Human Feedback

A natural way for humans to interact and express their intentions is through text. Consequently, there is much
interest in leveraging natural language in RL. One common strategy is to map natural language instructions
to trajectories or features. To achieve this mapping, previous works limit the instructions to a finite set
(Goyal et al., 2019; Bahdanau et al., 2019; Nguyen et al., 2021; Lin et al., 2022), or force a specific sentence
structure, e.g., “Go to X” (Fu et al., 2019). These restrictions simplify the mapping process, but, unlike
our algorithm, they also limit the flexibility of the language used. Another approach, which allows for more
general language, employs Neural Networks (NN) to map from natural language to rewards (MacGlashan
et al., 2015; Tung et al., 2018; Narasimhan et al., 2018; Yang et al., 2021). While this approach achieves
good performance, it requires a large labeled dataset to train the NNs. To avoid curating extensive datasets,
recent research focuses on exploiting pre-trained models. Pre-trained valence analyzers (Hutto & Gilbert,
2014) translate text feedback into a sentiment score. At each iteration, the sentiment score of the whole text
drives the Bayesian update of the reward model (Sumers et al., 2021). A single sentiment score may not

Figure 1: Traditional RLHF uses binary preferences, providing just one bit per query. We propose natural
language feedback, offering richer, human-readable signals that reduce interaction needs.

2

Published in Transactions on Machine Learning Research (01/2026)

capture all nuances in human text, e.g., “the start is good, but the end is bad.” Our experiments show how
having a more fine-grained interpretation of the feedback is beneficial.

2.3 Language Models in Reinforcement Learning

LLMs have recently emerged as powerful tools for natural language processing, providing novel approaches
in the field of RL. One direction treats pretrained LLMs as proxies for reward signals, directly querying
whether an outcome satisfies a language description of an objective (Kwon et al., 2023). While promising,
this binary feedback is limited in expressivity, an inherent information bottleneck that our method aims to
overcome. Another approach harnesses LLMs’ general knowledge to provide common sense priors (Li et al.,
2023; Ahn et al., 2022; Peng et al., 2024) that bias agent actions, for example, identifying hazardous states
from metadata (Choi et al., 2022). These methods complement our approach, which aims to learn subjective
human intentions that are unknown to LLMs.

A third line of work employs LLMs to translate natural language descriptions of goals into reward functions
in the form of code (Zhu et al., 2025). This approach faces two key challenges: (1) it is often easier to criticize
outcomes than to articulate goals precisely, leading to underspecified tasks, and (2) generating reward models
from descriptions alone frequently results in reward misalignment, especially when intent is underspecified.
To address these issues, researchers have developed iterative revision approaches using either pre-defined
reward evaluation functions (Yu et al., 2023; Ma et al., 2024; Xie et al., 2023) or binary preference feedback
(Yu et al., 2024a; Sun et al., 2025) to judge the performance of the generated reward functions. However,
reward evaluation functions rarely exist in practice, and we demonstrate that binary feedback provides limited
information. Furthermore, all these methods depend on LLM-generated code snippets which may be incorrect
(Liu et al., 2024) and unreliable (Yu et al., 2024b).

Our approach takes a different route: we use LLMs to convert free-form human text feedback, which provides
more nuanced evaluations than preference feedback, into training data for reward modeling. While there
are a few experiments in which authors provide text feedback (Ma et al., 2024; Xie et al., 2023), we collect
and analyze text feedback from a broad set of independent human participants, strengthening the real-world
applicability of our findings. Additionally, instead of relying on LLM-generated diversity to avoid local
maxima, our method uses text feedback to guide exploration towards relevant states.

3 Problem Setting

In this paper, we consider an agent who interacts with an environment aiming to maximize an expected
reward. We describe the interactions between the agent and the environment as an episodic Markov Decision
Process without reward function (MDP\R) (Puterman, 2014). Formally, an episodic Markov Decision Process
without reward function (MDP\R) is a tuple M := (S,A,P, T). S is the state space where each state s ∈ S
captures the environment configuration. For example, the position of an agent in a grid, the position of a car
and all surrounding objects in a self-driving task or the prompt and partial answer in LLM fine-tuning. A is
the set of actions that the agent can perform in the environment; for example, an action could be a step to the
right on the grid, accelerating a car or generating a specific next token in LLM fine-tuning. P : S ×A → ∆(S)
captures the transition probabilities, mapping state-action pairs to a probability distribution of the next
state over S, where ∆(S) denotes the probability simplex over S, and T is the time horizon. P captures the
environment dynamics, such as the distribution of a car’s position after acceleration or how text evolves after
token generation. The reward function, which maps state-action pairs to a reward r : S ×A → R, is unknown
to the agent. Instead, the agent learns a reward model r̂ : S → R based on human feedback. The unknown
reward function reflects how well state-action pairs align with the human’s implicit preferences or goals.

At each step, the agent performs an action according to a policy π : S → A. The goal is to learn the policy
π∗ that maximizes the expected return from the current state s,

V t
r (s) = max

a∈A
r(s, a) +

∑
s′∈S

P(s′|s, a)V t−1
r (s′), (1)

3

Published in Transactions on Machine Learning Research (01/2026)

Figure 2: Block diagram of Reinforcement Learning from Human Text Feedback (RLHTF). The algorithm
consists of two iterative phases: (1) learning a reward model (dashed lines) from state-level labels derived by
an LLM from evaluations in natural language, and (2) policy learning (solid lines), where an agent is trained
using standard RL algorithms that query the learned reward model.

Algorithm 1 RLHTF
1: Inputs: number of interactions N , landmarks, fLLM
2: Initialize Policy π0 and reward model r̂0
3: for i = 0 to N − 1 do
4: Record trajectory following policy: ti ← πi

5: Query human for feedback: fi ← ti

6: Encode context: ui ← (fi, ti, landmarks)
7: Translate to state-reward pairs: {so, R} ← fLLM(ui)
8: Update reward model: r̂i+1 ← reward_update(r̂i, {so, R})
9: Update policy: πi+1 ← policy_update(πi, r̂i+1)

10: end for

where V 1
r (s) = maxa∈A r(s, a), t ∈ [1; T] represents the number of timesteps left until the trajectory finishes,

and s′ represents the next possible state based on the environment’s transition dynamics. We denote the
state-action pairs visited when following π∗ as the optimal trajectory τ ∗ = {s∗

t , a∗
t }T

t=1.

We propose an algorithm, Reinforcement Learning from Human Text Feedback (RLHTF), shown in Figure
2. Analogously to the classical RLHF framework (Christiano et al., 2017), RLHTF consists of two phases
that are executed iteratively: reward model learning and policy learning. Section 4 describes how the reward
model r̂ is learned from human text feedback. Since the agent does not have direct access to the true reward
function r, the agent instead learns the policy π̂ that maximizes the value function V

r̂
derived from the

estimated reward model r̂. The agent directly queries the reward model, instead of the human evaluators,
significantly reducing time, energy, and monetary costs during policy learning (Christiano et al., 2017). We
employ standard RL methods. The algorithm is outlined in Algorithm 1 and publicly available1.

Our primary goal is to minimize the performance gap between this learned policy π̂ and optimal policy π∗,
which we denote as value gap and formally define as

E

[
T∑

t=1
r (s∗

t , a∗
t)− r (ŝt, ât)

]
,

where {ŝt, ât}T
t=1 represents the trajectory when following π̂.

4 Learning a Reward Model from Human Text Feedback with LLMs

We break down the process of learning a reward model from human feedback into three steps: (1) Context
encoding, which gathers human feedback with environment information; (2) Translation function, which
transforms the encoded context into a structured signal; (3) Reward model update mechanism to incorporate

1https://github.com/BelenMU/WordsToRewards

4

Published in Transactions on Machine Learning Research (01/2026)

these signals. This decomposition has been shown to be effective in prior work (Metz et al., 2024). Here, we
show how these steps can be implemented with text feedback.

4.1 Context Encoding

To encode raw data from the environment and interactions with evaluators into a format suitable for an LLM,
we must construct a structured user prompt. This prompt should capture the agent’s trajectory, human
feedback, and any relevant environmental landmarks to provide full context for interpretation.

At each interaction, the agent follows the policy π̂, generating a trajectory {ŝt}T
t=0. A human evaluator

observes the trajectory and provides text feedback f . These evaluations are flexible; for example, they may
include criticisms of specific states (“the last step is horrible”), or suggestions for alternative, unexplored
states (“go to the door”). The human text feedback is combined with information about the trajectory to
create a user prompt

u = {feedback: f , trajectory: {ŝt}T
t=0, landmarks: [(name1, location1) , ..., (nameN , locationN)]}.

As shown in Figure 6, the user prompt may also include information about landmarks in the environment
that help ground human feedback. Namely, we may include landmark names and their locations in the
environment, providing reference points known by both the user and the LLM.

4.2 Translation function

We use LLMs’ language processing capabilities to transform the information in the user prompt into labeled
states, which are then used to train a reward model. We design a system prompt to guide the LLM in its role
as a translation function. Efficient system prompts must describe the LLM’s role and the items in the user
prompt (Schulhoff et al., 2024). As this context is environment dependent (e.g., the meaning of elements
in the states), the system prompt differs from environment to environment. However, the system prompt
remains consistent across all user interactions. Appendix D includes all prompts verbatim.

There are three key components that make our system prompts efficient. First, to enhance reasoning, we
employ chain of thought (CoT) prompting (Wei et al., 2022), asking the model to classify the feedback intent
(e.g., evaluation vs. correction) before identifying the relevant states. Feedback is inherently intent-dependent
(Metz et al., 2024); for example, “to the left of the lamp is good” could either be an evaluation validating a
past action or an instruction suggesting a future correction. This intermediate classification step helps the
translation function better interpret and adapt to human intent, leading to more precise state-level label
assignments. Second, we use few-shot prompting (Kaplan et al., 2020) and provide demonstrations to steer
the model to better performance. By exposing the model to relevant cases, we reduce ambiguity and improve
accuracy. Third, to ensure that the output of the LLM is reliably interpretable in downstream tasks, we
enforce a structured format. Rather than relying on free-form text generation, which can be inconsistent, we
employ function calling to guarantee a well-defined output, making it easier to identify relevant states and
rewards.

Given the appropriate system prompt, the LLM translates the user prompt u(f , {ŝt}T
t=0, landmarks) into a

labeled dataset of states {so, R} = fLLM(u), where each output state so ∈ S has a corresponding reward
R ∈ R. This dataset is used to train the reward model.

4.3 Reward Model Update

The goal is to learn a model of the reward conditioned on the state-reward pairs {so, R} output by the
LLM. In simple tabular settings, the agent may track the reward probability distribution for every state and
update it using Bayesian inference as the state-reward pairs are observed. In more complex or continuous
environments, we may approximate the reward function with an NN. At each iteration, we expand the
training dataset with the state-reward pairs generated by the LLM, and finetune the NN using supervised
learning.

5

Published in Transactions on Machine Learning Research (01/2026)

Please enter your critique of the trajectory:

Answer 1: “Steps 1 and 2 are correct. Go above the
clock and then through the toilet.” (Describes specific
states.) — RLHTF with instructions
Answer 2: “Follow the gray path until you reach the
star.” (Uses unknown references, e.g., star)

— RLHTF no instructions
Answer 3: “It is terrible.” (Describes whole trajectory)

— Sentiment Feedback

Figure 3: Gridworld environment. The aim of the agent is to follow a target path (in gray) from the start
(yellow circle) to the end (yellow star). The agent’s trajectory (in blue) currently deviates from this path.
Below, we show the critique input box presented to human participants, along with example responses from
different feedback conditions.

5 Experiments with Human Evaluators

We recruited 26 human participants to evaluate our approach2. In particular, we apply RLHTF to the
Gridworld environment shown in Figure 3. An agent aims to follow a target path τ∗ known to human
evaluators but unknown to the agent. Standard RL approaches, like Goal Condition RL (GCRL), assume
access to a reward function, which is precisely what our method aims to learn, making them inappropriate
for comparison. Instead, we empirically compare against ground-truth feedback, which is rarely available in
practice, and state-of-the-art approaches for RL with human feedback:

• True trajectory-level feedback: The agent receives a single ground truth accumulated reward for the
entire trajectory, based on the number of steps that match the target path. This accumulated reward is
uniformly applied to all states in the trajectory.

• True state-level feedback: The agent receives a ground truth reward for each state in the trajectory,
indicating whether the state is on the target path.

• Sentiment feedback: Evaluators convey their judgment implicitly through the sentiment of their text
feedback. For example, an evaluator may write “Very bad” for poor performance or “Amazing” when the
agent closely follows the target path. The agent measures and uniformly applies the sentiment score as a
reward across all states in the trajectory (Sumers et al., 2021).

• PbRL: Human evaluators observe two candidate trajectories and select the one they judge to be closer to
the target (Christiano et al., 2017).

Experiments with true environment feedback were simulated 50 times. For the rest of the experiments, we
followed A/B testing guidelines and randomly assigned evaluators to eight different target paths among
two distinct feedback conditions. This resulted in approximately 50 experiments per feedback type. All
experiments start with the same reward model prior and consist of 4 interactions, during which the agent
executes the current optimal trajectory and receives the corresponding feedback to update the reward model.
Further implementation details, experimental design and participant information are provided in Appendix
B.1.

Since a state is either on the target path or not, in the RLHTF setting we prompt the LLMs to output
binary rewards R′ ∈ {0, 1}. All prompts are available verbatim in Appendix D. Additionally, to contextualize
feedback, the environment includes randomly placed landmarks, such as a chair or a clock. These landmarks
serve as reference points that both evaluators and LLMs observe, enabling the LLMs to translate feedback
such as “Go above the clock” in Figure 3 into a positive reward at position ‘b3’.

Once feedback is collected, the agent updates the reward model accordingly. The agent tracks the reward
probability distribution for every state, which we model as a beta distribution. In all scenarios, we initialize

2The study was categorized as minimal risk research qualified for exemption by the Institutional Review Board (IRB).

6

Published in Transactions on Machine Learning Research (01/2026)

0 1 2 3 4
Interaction

0

2

4

6

8

Av
er

ag
e

Va
lu

e
Ga

p
±

St
an

da
rd

 E
rro

r

True trajectory level
True state level
Sentiment
PbRL
RLHTF no instructions (ours)
RLHTF with instructions (ours)

Figure 4: Performance comparison of algorithms in the Gridworld. When participants receive instructions on
how to phrase their feedback, RLHTF outperforms other human feedback based methods and even surpasses
true environment feedback in early iterations.

the reward distributions as β(0.5, 0.5) to introduce a bias towards binary rewards: 0 (negative) or 1 (positive).
Then the agent performs the trajectory that maximizes the current reward model. As the time horizon is
finite (T = 10), we solve for the optimal trajectory with dynamic programming. The agent receives feedback
based on the executed trajectory. For analytical tractability, we model the distribution of the observed
rewards R′ with the conjugate prior, i.e., as Bernoulli distributions.

5.1 Feedback Granularity and Performance

Figure 4 shows the evolution of agent error across successive interactions with evaluators. Here, error is
defined as the number of steps in which the agent deviates from the target path. Statistical significance after
four interactions was assessed using Welch’s t-test, as detailed in Appendix B.1.

All feedback methods lead to performance improvements, but the time granularity (Metz et al., 2024), i.e., the
resolution at which feedback is provided (trajectory vs. state), plays a decisive role in learning efficiency. In
our experiments, both the true trajectory-level reward and sentiment feedback operate at the trajectory-level,
offering a single evaluation for an entire trajectory. This coarse granularity limits the agent’s ability to
discern which specific states contributed to success or failure, thereby slowing learning. In contrast, true
state-level reward and RLHTF operate at state-level, providing more precise guidance during training. The
impact of these granularity differences is particularly evident when comparing the first two bars in Figure 4:
after four iterations, true state-level feedback yields less than half the error of true trajectory-level feedback.
This statistically significant (p < 10−15) improvement reinforces the advantage of detailed information about
each state’s contribution to accelerate learning. Similarly, our algorithm RLHTF (5th bar) outperforms the
sentiment baseline (3rd bar) across all interactions, reducing the error by more than half when leveraging
the fine-grained information in the text. Additionally, RLHTF remains competitive with the state-of-the-art
PbRL algorithm, underscoring the effectiveness of fLLM in extracting actionable information from human
text feedback.

5.2 Human Feedback Adaptability to Instructions

In our initial evaluation, we found that without instructions on how to construct the text feedback, participants
often included information that the LLMs could not interpret. For example, when presented with Figure 3,
one participant wrote: “follow the gray path until you reach the star.” However, the LLM has no knowledge
of the gray path or the star; in fact, this is precisely what the agent is attempting to learn. Participants may
also refer to history not provided in the prompt (“This is not even as good as the initial one. Retract to your
first attempt.”) or actions outside of the reward model scope (“go up more on the right.”).

To address this issue, we showed the evaluators the following list of five instructions on how to provide
effective feedback:

7

Published in Transactions on Machine Learning Research (01/2026)

Figure 5: Average count of state-labels generated per experiment, categorized by correctness (correct in blue,
incorrect in red) and predicted labels (positive in solid, negative in hatched). A state-label is correct if the
label accurately identifies whether the state is in the target path or not. Providing brief instructions to human
evaluators (RLHTF with instructions) substantially increases the proportion of correctly identified states.

Additional Instructions: The agent has limited capabilities, so for it to understand you correctly
you should restrict your feedback. Namely, the agent does not understand:
• Do not compare trajectories: treat each path individually, without reference to previous attempts.

For example, avoid feedback like: “Now it is worse, go back to the previous trajectory”.
• Do not refer to the position of the star, yellow circle, or gray road. The agent doesn’t know their

locations; in fact, the agent is trying to learn where these are. For example, avoid feedback like:
“Follow the road until the star”.

• Avoid specific movement descriptions (go up, turn right). For example, avoid feedback like: “go
up, up, right, up” or “turn right later”.

Instead, the agent understands well:
• Description of states: Position in the trajectory. e.g. “At the beginning is wrong”, “step number 6

is good”, or position with respect to the furniture, e.g. “You should go to the left of the couch”.
• Sentiment: It works especially well if you explain what states are good or bad. e.g. “The first

half of the trajectory is bad. Above the TV is good.”

We conducted 51 experiments in the RLHTF with instructions condition. Remarkably, providing participants
with just two paragraphs of instructions increases the comprehensibility of the feedback to the LLM. For
example, in the same setting of Figure 3 a participant wrote: “steps 1 and 2 are correct. Go above the clock
and then through the toilet.” This allows fLLM to better extract relevant spatial cues and assign rewards
accordingly, as shown in Figure 5. We evaluate whether each state-reward pair, automatically generated from
human feedback, is correct by comparing it against the known ground truth path. Formally, a generated
state-reward pair (so, R) is considered correct if R = 1{so ∈ τ∗}, where 1{·} is the indicator function, and
τ∗ is the ground truth target path. Providing brief instructions to the evaluators increases the accuracy of
LLM-generated state-labels by 19.1%, indicating that the same amount of human effort yields substantially
clearer, more actionable supervision. In contrast, the sentiment baseline receives mostly negative feedback
and attains only 35.4% positive precision on the states in τ∗. PbRL assigns rewards to every differing state
across a pair of trajectories, which inflates label counts with redundant or weakly informative items and
results in a 6.9% lower label accuracy than RLHTF with instructions (63.7% vs. 70.6%). Moreover, RLHTF
with instructions encourages evaluators to provide more constructive guidance: it is the only condition in
which the amount of positive feedback surpasses negative (1.25x). These trends indicate that instructions
help steer feedback, improving both reward attribution and, consequently, policy success rates. Moreover, as
detailed in Appendix B.1, providing guidelines significantly improves consensus: it doubles the agreement
between human evaluators’ feedback interpretations and increases the consistency of interpretations across
different LLMss.

8

Published in Transactions on Machine Learning Research (01/2026)

After a single instance of feedback, Figure 4 shows that RLHTF with instructions reduces the task error
by 42%, even outperforming ground-truth state-level feedback. This improvement occurs because RLHTF
proactively guides exploration towards the high-reward regions mentioned by the human feedback, which might
not be covered by the current trajectory. In contrast, true environment feedback is purely reactive, offering
evaluations only for states actually visited. Although ground-truth state feedback eventually surpasses RLHTF
after 4 interactions, our method outperforms other RL algorithms without explicit rewards. A key advantage
of RLHTF is its use of LLMs to perform reward attribution. Unlike previous approaches, which update all
states in a trajectory (sentiment) or all differing states between two trajectories (PbRL) with a single reward,
RLHTF distributes rewards more precisely. This precision allows RLHTF to reduce error more quickly and
substantially, significantly outperforming Sentiment (p < 10−13) and PbRL (p < 0.0025) algorithms. After
just 4 instances of human feedback, RLHTF with instructions reduces the error to approximately one-third
of its original value.

Beyond task error reduction, Table 1 shows the success rate, defined as the percentage of experiments in
which the learned reward model, after four pieces of feedback, leads to a policy that exactly follows the target
path. Strikingly, RLHTF with instructions matches the success rate of true state-level feedback, achieving
a 25.5% success rate. This level of performance is particularly impressive given the combinatorially large
space of possible trajectories and the fact that only four pieces of feedback are provided. In contrast, baseline
methods (true trajectory-level feedback, sentiment feedback, and PbRL) fail to produce a single perfect
path. This result demonstrates that guided human feedback, when processed by RLHTF, can rival access to
privileged ground-truth state rewards in our experimental setting.

Algorithm Success Rate
True trajectory-level 0%
True state-level 25.0%
Sentiment (Sumers et al., 2021) 0%
PbRL (Christiano et al., 2017) 0%
RLHTF no instructions (ours) 0%
RLHTF with instructions (ours) 25.5%

Table 1: Percentage of learned policies that perfectly follow the target path after four rounds of feedback.
RLHTF with instructions matches the performance of true state-level feedback, while all other methods fail
to achieve any success.

As LLMs become more powerful, their ability to process human feedback improves, further boosting the
performance of RLHTF in the Gridworld experiments. As shown in Appendix B.1, upgrading from GPT-4o
(used in our main experiments) to the newer GPT-4.5 or Sonar-reasoning models further reduces the error
by 23% and 30%, respectively. This result suggests that, unlike the baselines, RLHTF in settings similar to
those tested here may continue to benefit from future advances in LLM capabilities, further strengthening
the potential of natural language feedback in RL.

6 RLHTF in Continuous and Structurally Complex Environments

In the previous section, we demonstrated that RLHTF efficiently learns reward functions in discrete, tabular
domains. Here we analyze method’s performance in two settings that are continuous and structurally complex.
We focus on two representative challenges: (i) precise motor control in the MuJoCo Reacher task, where
rewards must be inferred from a continuous observation space, and (ii) goal–conditioned manipulation in a
Rubik’s Cube environment, where the reward hinges on matching human-specified color patterns. Across
these experiments, we compare RLHTF to preference-based RL (PbRL) and to an oracle with access to the
true reward.

9

Published in Transactions on Machine Learning Research (01/2026)

6.1 Generalization to Continuous Environments

To test generalization beyond tabular settings, we apply RLHTF in a continuous environment of the physics
simulator MuJoCo (Todorov et al., 2012). Namely, we apply RLHTF to Reacher, a two-jointed robot arm.
The aim is to apply appropriate torques to the hinges so that the robot’s fingertip reaches a target. The
human evaluators watch and critique a video of the robot arm moving under the current policy. To aid human
evaluators in their assessment, we incorporate a timestamp and some visual landmarks (colored circles) into
the environment. Figure 6 shows the modified Reacher environment. These modifications aid the human
evaluator to refer to specific locations (“Go to the left of the blue circle.”) or moments in the trajectory (“The
movement from frame 4 to 8 is wrong.”). We emphasize that our method does not require the human to
explicitly understand or annotate states such as joint angles or torques. Instead, human evaluators provide
natural language feedback, and our method infers meaningful state-level reward signals from contextual and
temporal cues naturally present in the text.

Figure 6: Generation of state-reward pairs from human feedback and observations using an LLM (Step 7 in
Algorithm 1) in modified Reacher environment. The aim of the robotic arm is to stay close to the red ball.

The LLM processes three inputs: human feedback, landmark locations and the sequence of filtered states
(where information about the target is removed, see Appendix B.2), making up the video. The LLM’s task
is to interpret these inputs to deduce what states are described as positive or negative. Figure 6 shows
how the state-reward pairs are generated. The LLM outputs pairs of filtered states and binary labels.
Each label indicates whether the corresponding state is positive or negative. If a filtered state is returned
partially, missing elements are filled in by randomly sampling from the set of observed trajectory states. We
approximate the reward function as a fully connected NN, which takes a state vector as input and outputs a
scalar corresponding to the predicted reward. At each iteration, we expand the training dataset with the
state-reward pairs output by the LLM, {so, R}. Then, we employ stochastic gradient descent to fine-tune the
NN with the expanded training dataset. This supervised learning process uses a cross-entropy loss function
and is further detailed in Appendix B.2.

We suggest that feedback in natural language is more informative than preferences between two trajectories,
and thus RLHTF requires fewer interactions with humans to achieve an accurate reward model. To verify the
hypothesis, we compare the evolution of the reward model with RLHTF versus PbRL, as shown in Figure 7.
While both feedback types improve the reward model, text feedback results in a more precise localization of
the target. By the tenth interaction, only a small area around the target receives a high reward with RLHTF,
whereas PbRL results in a reward model more uncertain about the target location, giving high reward to
large areas of the environment. Figure 7 suggests that natural language feedback enables the reward model
to identify the target more quickly and precisely.

10

Published in Transactions on Machine Learning Research (01/2026)

(a) Initialization

(b) RLHTF after
1 query

(c) RLHTF after
5 queries

(d) RLHTF after
10 queries

(e) PbRL after
1 query

(f) PbRL after
5 queries

(g) PbRL after
10 queries

Figure 7: Reward model visualization for RLHTF vs PbRL. The top row illustrates the evolution of the
reward estimations as more text feedback is gathered, while the bottom row shows the corresponding evolution
with preference feedback. The blue star marks the target location and darker colors indicate lower predicted
rewards. Notably, RLHTF quickly converges to a more accurate reward model than PbRL, as evidenced by
the more localized high-reward region around the target.

We also compare the agent’s performance, in terms of average distance to the target, when there is a budget
of 10 human interactions. Figure 8a shows how the reward evolves as the agent learns. Although RLHTF
is not as effective as directly observing the true environment feedback, RLHTF performs much better in
regimes with low feedback than PbRL. In fact, in our experiments RLHTF increases the reward by 40% with
only 10 human inputs, while PbRL at first repeatedly executes the trajectory with the arm fully bent, and it
needs many more pairwise comparisons to approach the target.

0 10000 20000 30000 40000 50000 60000 70000 80000
Episodes

6

8

10

12

14

16

18

Av
er

ag
e

Re
wa

rd

True
RLHTF
PbRL

(a) Reacher environment. RLHTF demonstrates strong
performance in continuous environments, increasing the
reward by 40% with only 10 human inputs.

10000 20000 30000 40000 50000 60000
Episodes

0

1

2

3

4

5

6

Re
wa

rd

RLHTF (= 10 4)
PbRL (= 10 4)
True (= 10 4)
True (= 10 5)

(b) Rubik environment for task where the optimal
reward is 7.4. Unlike true reward, which can lead
to local maxima, RLHTF leverages dynamic human
feedback that adapts to agent progress, guiding explo-
ration and overcoming reward modeling challenges.

Figure 8: Reward evolution with episodes of the REINFORCE algorithm. We compare the performance
for RLHTF with 10 pieces of text feedback provided at the vertical dashed lines, PbRL with 10 trajectory
comparisons, and true environment.

11

Published in Transactions on Machine Learning Research (01/2026)

6.2 Towards Adressing Certain Reward Modeling Challenges

To highlight RLHTF’s strengths in environments where reward design is challenging, we evaluate RLHTF in
the Rubik’s Cube environment (Gröling, 2022). This environment involves a six-sided cube where each side
has a 3× 3 grid of squares, each taking one of six colors. The goal of the agent is to manipulate the cube so
that the front face matches a pattern specified by a human user.

Consider the task of obtaining an orange ‘X’ pattern on the front face of the Rubik’s cube, i.e., both diagonals
must be orange. In RLHTF, the evaluator watches a video of the trajectory following the current agent policy,
and then provides text feedback. This feedback, along with the sequence of nine color grid squares observed
on the front face, is input to the LLM. The LLM processes this information and outputs sets of 9 color grid
squares, each accompanied by a label indicating whether the set is positive or negative. The labeled dataset
is then used to update the reward model. In the case of PbRL, we query the evaluator for their preference
between two different videos. The candidate videos are chosen by sampling trajectories and identifying the
pair with the highest variance in preference estimations among the reward models in an ensemble. The true
reward is computed by assigning a +2 score for each correct orange square in the diagonals and averaging
this score over the ten timesteps in each trajectory.

Figure 8b compares the performance of RLHTF, PbRL, and true reward. After only ten human interactions,
RLHTF successfully produces the desired orange ‘X’ pattern on the Rubik’s Cube front face. In contrast,
PbRL shows no meaningful improvement beyond its baseline performance. This limitation arises because
preference-based feedback encodes at most one bit of information per interaction, requiring many more
interactions to achieve the desired performance. Using true rewards, the agent gets stuck in a local maximum,
where only three out of the five diagonal squares are correctly orange. Even after manipulating the learning
rate, the agent fails to produce the desired pattern. This shows how reward design in RL problems is
challenging and often leads to unwanted behavior, even in constrained environments. In contrast, evaluators
in RLHTF naturally adapt their feedback according to the agent behavior, mitigating such misalignments.
For example, an evaluator may write “you are doing it wrong, the top right corner should be orange and
not red”, thus encouraging exploration when stuck in a local maximum. This adaptability bypasses the
need for complex reward design and extensive hyperparameter tuning. Human text feedback and additional
experiments with a different target pattern are provided in Appendix B.3.

7 Future Work

While our framework introduces a new paradigm for incorporating natural language human feedback into
reinforcement learning, its current implementation presents several limitations. First, our prompts must
be adapted to each environment, similar to how traditional RL requires handcrafting reward functions.
Although we demonstrate some degree of generalizability across three distinct environments, fully task-
agnostic prompting remains an open challenge. The system prompts require manual design to ground the
LLM in the specific context of each environment. In our experiments, we partially reduce this burden by
using off-the-shelf object detectors (i.e., YOLO) to automatically detect and name landmarks, which are
then inserted into the prompt. However, the core system prompt still requires manual design. To further
automate the system prompt generation, future work could leverage metadata (e.g., simulator documentation
or object annotations) to automatically generate descriptions or relevant items, (e.g. the description of state
elements). Alternatively, future work could explore automatic prompt optimization techniques (Ramnath
et al., 2025), that use evolutionary strategies to discover effective prompts without human intervention. We
focus on three environments chosen for their interpretability and relevance to key RL challenges. Future work
will extend our approach to more complex tasks, such as LLM finetuning, where an evaluator could critique
stylistic elements (“too formal”) or specific content (“the third paragraph is confusing”), going beyond the
binary preferences typically used in existing RLHF pipelines.

Second, although LLMs can interpret rich feedback, their performance is constrained by the content and clarity
of the prompt. When critical information is missing or ambiguous, the LLM may hallucinate or misinterpret
the intent. We find that providing instructions to human evaluators significantly reduces these issues, though it
does not eliminate them entirely. Multimodal verification could help reduce hallucations further. Future work

12

Published in Transactions on Machine Learning Research (01/2026)

could deploy an ensemble method, where each piece of human feedback is interpreted by several models, and
only outputs with majority agreement are retained. Our analysis suggests that keeping only the state-reward
pairs on which the majority of models agree will filter many of the incorrect interpretations. Similarly, our
method shows consistent empirical improvements, but we lack formal guarantees of performance.

Lastly, our experiments focus on state-level feedback. However, our approach naturally extends to action-level
feedback by appropriately prompting the LLM, e.g., an evaluator on the Gridworld environment might say
"go up 5 steps." This capability opens the door to broader applications in RL settings.

8 Conclusions

Our work leverages LLMs to extract state-level rewards from natural language feedback, addressing the
challenge of reward attribution and capturing more nuanced information than simple binary comparisons or a
single sentiment score. Moreover, our experiments with real human participants, a contribution not common
in this line of research, take a step toward real-world applicability.

Acknowledgments

Belén Martín-Urcelay was supported by the Rafael del Pino Fellowship. The human-participant experiments
were supported by the Hasler Stiftung grant (project 2024-06-12-90). The authors thank the action editor
and the anonymous reviewers for their insightful comments and constructive feedback.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,

Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda
Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes,
Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding
language in robotic affordances. Proceedings of Machine Learning Research, pp. 287–318, 4 2022. URL
http://arxiv.org/abs/2204.01691.

Dzmitry Bahdanau, Arian Hosseini, Felix Hill, Pushmeet Kohli, Jan Leike, Edward Hughes, and Edward
Grefenstette. Learning to understand goal specifications by modelling reward. In Proc. of International
Conference on Learning Representations, 2019.

Chandrayee Basu, Mukesh Singhal, and Anca D. Dragan. Learning from richer human guidance: Augmenting
comparison-based learning with feature queries. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, HRI ’18, pp. 132–140, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450349536. doi: 10.1145/3171221.3171284. URL https://doi.org/10.
1145/3171221.3171284.

Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier. Preference-based
reinforcement learning: Evolutionary direct policy search using a preference-based racing algorithm.
In Machine Learning, volume 97, pp. 327–351. Kluwer Academic Publishers, 10 2014. doi: 10.1007/
s10994-014-5458-8.

Colin Cherry. On human communication. MIT press Cambridge, 1966.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. Lmpriors: Pre-trained language models as
task-specific priors. 10 2022. URL http://arxiv.org/abs/2210.12530.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Proc. of Advances in Neural Information Processing
Systems, volume 2017-Decem, pp. 4300–4308, 2017.

13

http://arxiv.org/abs/2204.01691
https://doi.org/10.1145/3171221.3171284
https://doi.org/10.1145/3171221.3171284
http://arxiv.org/abs/2210.12530

Published in Transactions on Machine Learning Research (01/2026)

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: Inverse
reinforcement learning for vision-based instruction following. In Proc. of International Conference on
Learning Representations, pp. 1–14, 2019.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward shaping in
reinforcement learning. In Proc. of International Joint Conference on Artificial Intelligence, volume
2019-Augus, pp. 2385–2391, 2019. ISBN 9780999241141. doi: 10.24963/ijcai.2019/331.

Marc Gröling. Gym rubik’s cube environment, 2022. URL https://github.com/mgroling/GymRubiksCube.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca D Dragan. Inverse reward design.
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6765–6774,
2017.

C J Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media
text. In Prof. of Conference on Artificial Intelligence, pp. 216–225, 2014. URL http://sentic.net/.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, Kalen Michael,
TaoXie, Jiacong Fang, imyhxy, Lorna, Zeng Yifu, Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang,
Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG, Piotr Skalski, Adam
Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime
Instance Segmentation, November 2022. URL https://doi.org/10.5281/zenodo.7347926.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models. ArXiv, abs/2001.08361,
2020. URL https://api.semanticscholar.org/CorpusID:210861095.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and Davide
Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982–987,
2023.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models. In
International Conference on Learning Representations, 2023. URL http://arxiv.org/abs/2303.00001.

Belinda Z. Li, William Chen, Pratyusha Sharma, and Jacob Andreas. Lampp: Language models as probabilistic
priors for perception and action. 2 2023. URL http://arxiv.org/abs/2302.02801.

Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in context. In Proc.
of the Association for Computational Linguistics, volume 1, pp. 8546–8560, 2022. ISBN 9781955917216.
doi: 10.18653/v1/2022.acl-long.585.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV 2014, pp. 740–755, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-10602-1.

Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. No need to lift a finger anymore?
assessing the quality of code generation by chatgpt. IEEE Transactions on Software Engineering, 50(6):
1548–1584, 2024. doi: 10.1109/TSE.2024.3392499.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models. 5 2024. URL https://iclr.cc/virtual/2024/poster/18971.

James MacGlashan, Monica Babeş-Vroman, Marie DesJardins, Michael L. Littman, Smaranda Muresan,
Shawn Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding english commands to reward
functions. Robotics: Science and Systems, 11, 2015. ISSN 2330765X. doi: 10.15607/RSS.2015.XI.018.

Yannick Metz, David Lindner, Raphaël Baur, and Mennatallah El-Assady. Mapping out the space of human
feedback for reinforcement learning: A conceptual framework. arXiv preprint arXiv:2411.11761, 2024.

14

https://github.com/mgroling/GymRubiksCube
http://sentic.net/
https://doi.org/10.5281/zenodo.7347926
https://api.semanticscholar.org/CorpusID:210861095
http://arxiv.org/abs/2303.00001
http://arxiv.org/abs/2302.02801
https://iclr.cc/virtual/2024/poster/18971

Published in Transactions on Machine Learning Research (01/2026)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for transfer in deep
reinforcement learning. Artificial Intelligence Research, 63:849–874, 2018. ISSN 10769757. doi: 10.1613/
jair.1.11263.

Khanh Nguyen, Dipendra Misra, Robert Schapire, Miro Dudík, and Patrick Shafto. Interactive learning from
activity description. Proceedings of Machine Learning Research, 139:8096–8108, 2021. ISSN 26403498.

Parag C Pendharkar. Reinforcement learning in financial market applications: a survey and research agenda.
Artificial Intelligence Review, 55(2):1247–1306, 2022.

Andi Peng, Ilia Sucholutsky, Belinda Z. Li, Theodore R. Sumers, Thomas L. Griffiths, Jacob Andreas, and
Julie A. Shah. Learning with language-guided state abstractions. In International Conference on Learning
Representations, 2 2024. URL http://arxiv.org/abs/2402.18759.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai Wang,
Sangmin Woo, Sullam Jeoung, Yawei Wang, et al. A systematic survey of automatic prompt optimization
techniques. arXiv preprint arXiv:2502.16923, 2025.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si, Yinheng Li,
Aayush Gupta, H Han, Sevien Schulhoff, et al. The prompt report: A systematic survey of prompting
techniques. arXiv preprint arXiv:2406.06608, 5, 2024.

Theodore R. Sumers, Mark K. Ho, Robert D. Hawkins, Karthik Narasimhan, and Thomas L. Griffiths.
Learning rewards from linguistic feedback. In Proc, of Conference on Artificial Intelligence, volume 7, pp.
6002–6010, 2021. ISBN 9781713835974. doi: 10.1609/aaai.v35i7.16749.

Shengjie Sun, Runze Liu, Jiafei Lyu, Jing-Wen Yang, Liangpeng Zhang, and Xiu Li. A large language
model-driven reward design framework via dynamic feedback for reinforcement learning. Knowledge-Based
Systems, 326:114065, 2025.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In Proc.
of International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi: 10.1109/IROS.
2012.6386109.

Hsiao Yu Tung, Adam W. Harley, Liang Kang Huang, and Katerina Fragkiadaki. Reward learning from
narrated demonstrations. In Proc. of Conference on Computer Vision and Pattern Recognition, pp.
7004–7013, 2018. ISBN 9781538664209. doi: 10.1109/CVPR.2018.00732.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Proc. of Advances
in Neural Information Processing Systems, 1 2022. URL http://arxiv.org/abs/2201.11903.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3-4):229–256, 1992. ISSN 0885-6125. doi: 10.1007/bf00992696.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao
Yu. Text2reward: Reward shaping with language models for reinforcement learning. arXiv preprint
arXiv:2309.11489, 2023.

15

http://arxiv.org/abs/2402.18759
http://arxiv.org/abs/2201.11903

Published in Transactions on Machine Learning Research (01/2026)

Tsung Yen Yang, Michael Hu, Yinlam Chow, Peter J. Ramadge, and Karthik Narasimhan. Safe reinforcement
learning with natural language constraints. In Proc. of Advances in Neural Information Processing Systems,
volume 17, pp. 13794–13808, 2021. ISBN 9781713845393.

Chao Yu, Hong Lu, Jiaxuan Gao, Qixin Tan, Xinting Yang, Yu Wang, Yi Wu, and Eugene Vinitsky. Few-shot
in-context preference learning using large language models. 10 2024a. URL http://arxiv.org/abs/2410.
17233.

Chunxiao Yu, Jinlong Liu, Shamim Nemati, and William M Gregg. Reinforcement learning in healthcare: A
survey. arXiv preprint arXiv:1908.08796, 2021.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu,
Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. Language to
rewards for robotic skill synthesis. In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.), Proceedings
of The 7th Conference on Robot Learning, volume 229 of Proceedings of Machine Learning Research, pp.
374–404. PMLR, 06–09 Nov 2023. URL https://proceedings.mlr.press/v229/yu23a.html.

Xiao Yu, Lei Liu, Xing Hu, Jacky Wai Keung, Jin Liu, and Xin Xia. Fight fire with fire: How much can we
trust chatgpt on source code-related tasks? IEEE Transactions on Software Engineering, 50(12):3435–3453,
2024b. doi: 10.1109/TSE.2024.3492204.

Guobin Zhu, Rui Zhou, Wenkang Ji, and Shiyu Zhao. Lamarl: Llm-aided multi-agent reinforcement learning
for cooperative policy generation. IEEE Robotics and Automation Letters, 2025.

16

http://arxiv.org/abs/2410.17233
http://arxiv.org/abs/2410.17233
https://proceedings.mlr.press/v229/yu23a.html

Published in Transactions on Machine Learning Research (01/2026)

A Broader Impact Statement

A.1 Human Subject Research

Our work involves a study with human participants. The study was categorized as minimal risk research
qualified for exemption status under 45 CFR 46 104d.2 by the Institutional Review Board (IRB). All 26
participants were adults, provided informed consent before participation, were able to withdraw at any time,
and were equally compensated $10 for approximately 30 minutes of their time (no volunteer work was used).
No personally identifying information beyond coarse demographic data was collected, stored or shared.

The ultimate goal of our work is to reduce the need for complex reward engineering by enabling alignment
by non-experts from their feedback in the form of natural language. This new manner of alignment may
contribute to the democratization of RL training. However, as with all alignment technologies, there is a
dual-use risk where such methods could be employed to align agents with malicious instructions. Malicious
actors could exploit natural language feedback interfaces to inject misleading rewards, causing RL agents
to learn harmful behaviors. All our experiments were done in simulated environments with no deployment
to real-world systems or high-stakes decision domains. Any future applications in safety-critical or socially
sensitive settings would require additional domain-specific oversight and safeguards.

The proposed algorithm seeks to align RL agents with fewer human interactions. However, employing fewer
evaluators for alignment may exacerbate bias. This reinforces the importance of hiring diverse evaluators
across cultural, gender and language backgrounds.

A.2 Reliance on LLMs

This work uses LLMs as translation functions to map human feedback onto state-level rewards. However,
LLMs are prone to hallucinations or biased interpretations, especially when presented with ambiguous
feedback. We attempt to mitigate these risks by using few-shot prompting, environment-specific prompts and
providing evaluators with guidelines, however, misinterpretations still persist. Moreover, the performance of
our approach depends on proprietary LLM models, which may limit transparency and reproducibility. To
partially mitigate this, we release our prompts and code, and report results across multiple LLMs.

B Experiment Details

B.1 Gridworld

This section provides detailed information about the experimental setup, data collection process, and
implementation choices for our experiments with human evaluators. In each trajectory, the agent takes 10
steps in the Gridworld environment shown in Figure 3. At each step, the possible actions are either to move
right or up. The agent movements are restricted to a 5x10 grid. When the agent is at a border and performs
an action that would take the agent outside of the allowed region, the agent does not move.

We simulate a scenario in which a human wants a robot to navigate their house in a specific manner. To make
the environment more realistic, we sample four images of furniture or household objects (e.g., sofa, chair,
toaster and TV) and add them to the environment. These objects serve as landmarks, helping evaluators
communicate their critiques more effectively by using them as reference points. The landmarks are detected
with a YOLOv8 model (Jocher et al., 2022) trained on the Microsoft COCO dataset (Lin et al., 2014), and
their positions are fed to the LLM for shared context with the evaluators. Namely, we use gpt-4o to translate
human feedback into state-level rewards.

We conducted our experiments with the assistance of human evaluators. The study was categorized as
minimal risk research qualified for exemption status under 45 CFR 46 104d.2 by the Institutional Review
Board (IRB). We recruited 26 participants, most of whom were university students (46% female, 54% male).
Table 2 provides a breakdown of their geographic region were participants were born.

Following A/B testing guidelines, we randomly assigned evaluators to interact with different algorithms. Each
evaluator provided feedback on two out of the four algorithms: (1) either RLHTF with instructions or RLHTF

17

Published in Transactions on Machine Learning Research (01/2026)

Region Participant Count
Asia 11
North America 6
Africa 2
South America 1
Europe 1

Table 2: Breakdown of participants by region of birth.

without instructions, and (2) either Sentiment or PbRL. To minimize any potential bias due to familiarity
with the interface or tasks, we randomized the order of these settings. Each participant provided feedback
for either 8 different rooms or for a duration of 30 minutes, whichever occurred first. Participants were
compensated with $10 for their work. In total, we collected 772 feedback samples from 26 participants. The
average number of words per interaction is 17.48 and 17.30 words in the settings without and with additional
guidelines, respectively. A breakdown of the number of experiments for each algorithm using human feedback
is summarized in Table 3. The experiments with the true environment rewards were simulated 50 times.

Experiment Type First Second Total
RLHTF with instructions 27 24 51
RLHTF without instructions 23 22 45
PbRL 24 32 56
Sentiment 24 17 41

Table 3: Breakdown of number of experiments for each algorithm type, each experiment was done for four
interactions. Columns First and Second indicate whether the feedback was collected in the first or second
task performed by the evaluator, with totals shown in the last column.

We conduct Welch’s t-test to compare the performance of different algorithms after receiving four pieces
of feedback. Table 4 reports the resulting p-values. Our results indicate that RLHTF with instructions
significantly outperforms both PbRL and sentiment feedback, which do not have direct access to the ground
truth feedback from the environment. It also significantly outperforms the setting where true trajectory-level
feedback is received from the environment. In the case of RLHTF without instructions on how to construct
the feedback, the performance is statistically indistinguishable from PbRL (p = 0.5531). Receiving the ground
truth state-level feedback from the environment yields the best trajectories after four pieces of feedback,
significantly outperforming all other settings, except for RLHTF with instructions where the difference is not
statistically significant (p = 0.1752).

Table 1 depicts the performance of the final policy learned from 4 pieces of feedback.Most algorithms fail
to recover the exact target trajectory, achieving 0% success rate. Notably, both our method RLHTF with
instructions and ground-truth state-level feedback result in perfect trajectories in 25% of experiments. This
demonstrates that natural language feedback, when guided with simple prompting instructions, achieve
results comparable to the often unrealistic assumption of state-level supervision.

RLHTF without
instructions PbRL Sentiment True

trajectory True state

RLHTF with instr. 0.0009 0.0024 3.4× 10−14 1.9× 10−8 0.1752
RLHTF without instr. - 0.5531 2.1× 10−6 0.0391 6.4× 10−7

PbRL - - 2.7× 10−9 0.0021 4.8× 10−7

Sentiment - - - 4.5× 10−5 2× 10−23

True trajectory - - - - 1.2× 10−16

Table 4: p-values for Welch’s t-tests, showing that RLHTF with instructions and true state-level rewards
significantly outperform other methods with 4 pieces of feedback.

18

Published in Transactions on Machine Learning Research (01/2026)

Figure 9: Example of human interaction with PbRL in Gridworld.

Guidelines for Evaluators

For both RLHTF settings, we provided participants with the following guidelines:

Objective: The purpose of this experiment is to provide instructional feedback to an artificial agent.
The task for the agent is to navigate from a yellow circle to a yellow star along a gray pathway. The
agent will attempt this task by following a trajectory marked in blue. Your role is to offer written
feedback that assists in correcting the agent’s current course.

Task Instructions:
1. Observe the blue trajectory that the agent has taken.
2. Provide your guidance and feedback on the agent’s performance (e.g., “Do not go below the

sofa. The end was very good”).
3. Repeat 4 times.

In the setting with instructions, participants also received the additional set of instructions outlined in Section
5.2. These instructions helped participants adapt their feedback more effectively, which in turn accelerated
the learning of the reward model.

For the PbRL the participants were shown the example in Figure 9 and told:

Objective: The purpose of this experiment is to provide feedback to an artificial agent. The
task for the agent is to navigate from a yellow circle to a yellow star along a gray path.
Two agents will attempt this task by following a trajectory marked in blue and red respectively.
Your role is to select which of the two trajectories is better, so that the agent can learn the correct path.

Task Instructions:
1. Observe the blue and red trajectories that the agents have taken.
2. Choose the best one (0: blue, 1: red).
3. Repeat 4 times.

Lastly, in the sentiment setting participants were told:

19

Published in Transactions on Machine Learning Research (01/2026)

Objective: The purpose of this experiment is to provide feedback to an artificial agent. The task
for the agent is to navigate from a yellow circle to a yellow star along a gray path. The agent will
attempt this task by following a trajectory marked in blue. Your role is to offer written feedback that
assists in correcting the agent’s current course.

Task Instructions:
1. Observe the blue trajectory that the agent has taken.
2. Provide a sentiment rating (how good or how bad) for the trajectory, e.g.: “it is horrible” or

“amazing”.
3. Repeat 4 times.

Additional Guidelines Effect on Consensus

To quantify annotator variability, we analyze the state-labels obtained across evaluators when exposed to the
same 8 Gridworld test rooms with identical initializations. For each pair of participants, we compute the
Jaccard similarity between their sets of state–label pairs, capturing the fraction of overlapping annotations
relative to the total annotations made. In the setting without additional guidance, the average pairwise
Jaccard similarity is 0.1028, indicating very high variability in how non-experts describe the same trajectories.
When we provide additional guidelines to the evaluators, the average Jaccard similarity increases to 0.2241,
so agreement between evaluators roughly doubles, although substantial variability remains. This analysis
confirms that human feedback can be highly noisy and underscores that our method is explicitly evaluated
under such challenging, non-expert conditions.

We further hypothesize that these guidelines also reduce ambiguity in the human feedback, thereby increasing
output consistency across different LLM models. To test this hypothesis, we input the same prompts and
collected feedback to 5 different models (sonar, gpt-4o, o1, o3-mini and gpt-3.5) and compared the output
state-reward pairs. Figure 10 categorizes the generated state-reward pairs according to the number of models
that agreed on them. We notice that by providing guidelines led to a marked shift toward consensus. The
proportion of outputs with majority agreement (at least 3 models) rose from 48.5% to 73.3%. Specifically,
complete agreement across all five models nearly doubled (10.3% to 20.4%), while inconsistent outputs
generated by only a single model dropped significantly (30.1% to 13.5%).

Additionally, Figure 11 shows that the correctness of the output state-reward pair is highly correlated to
its level of agreement between models. While 84% of the state-reward pairs generated by all the 5 models
are correct, only 43% of the state-reward pairs generated by a single model are correct. This suggests that
multimodal verification could help reduce hallucinations.

Performance for Different LLMs

We assess the robustness of reward learning from human feedback by experimenting with alternative LLMss.
Specifically, we reuse the human feedback collected during the RLHTF experiments with GPT-4o outlined in
Section 5, and apply the same prompts to different base models. Figure 12a shows the average error evolution
in the setting where human evaluators are not given additional instructions, while Figure 12b shows the
performance when the feedback was given after observing additional instructions.

We observe a correlation between LLM capability and RLHTF performance. GPT-3.5 Turbo maintains the
worst average error across interactions in both settings. Perplexity’s sonar-reasoning model performs the
best, showcasing its ability to interpret free form human feedback. Comparing final errors at interaction 4,
Sonar-reasoning reduces the average error by 33% relative to GPT-3.5 in the no-instructions setting (from 6.7
to 4.5), and by 52% in the with-instructions setting (from 4.7 to 2.3). The superior performance of more
capable models is also reflected in the Gridworld success rates summarized in Table 5, where more powerful
LLM models achieve the target path 2 to 3 times more often than GPT 3.5 in the case with instructions.

The error reduction pattern across interactions follows a consistent trend: rapid improvement after receiving
the first piece of text feedback, followed by more gradual improvements in subsequent interactions. This

20

Published in Transactions on Machine Learning Research (01/2026)

Figure 10: Consensus of output state–reward pairs across five LLMs: sonar, gpt-4o, o1, o3-mini, gpt-3.5.
Percentages reflect the share of all generated outputs, grouped by the number of models in agreement. We
observe that providing guidelines to the evaluators increases the agreement between models.

LLM model With
Instructions

Without
Instructions

gpt-3.5-turbo 9.8% 2.2%
gpt-4o 25.5% 0.0%
gpt-4.5 25.2% 8.8%
o1 27.5% 4.4%
o3-mini 25.5% 0.0%
sonar 15.7% 2.2%
sonar-reasoning 31.37% 4.4%

Table 5: Gridworld success rate of different LLM models with and without instructions.

pattern is maintained across all models, showcasing the robustness of RLHTF, though the rate of improvement
varies, with newer models generally showing more substantial error reductions per interaction. These findings
support our conjecture that RLHTF will likely continue to benefit from ongoing advancements in LLMs
technology.

B.2 Reacher Environment

Each trajectory in the Reacher environment spans T = 50 frames. The standard observation space contains
information about the goal (target location) and the performance (distance to target). However, to prove that
the LLM is capable of deducing the performance solely from the human feedback, we filter this information
from the user prompt. The LLM obtains a filtered state that includes the fingertip’s location, arm’s joint
angles, and angular velocities. The filtering and preprocessing of the observation are detailed in Figure 13.

We use the LLM gpt-4o to translate the human feedback to state-reward pairs. To conduct a fair comparison
with PbRL, we reconstruct the filtered states output by the LLM back into the complete original observation

21

Published in Transactions on Machine Learning Research (01/2026)

(a) Without Guidelines.

(b) With Guidelines.

Figure 11: Count of state-reward pairs for each level of model agreement, categorized by correctness (correct
in blue, incorrect in red) and predicted labels (positive in solid, negative in hatched). A state-reward is
correct if the reward accurately identifies whether the state is in the target path or not. The more models
output a state-reward pair the higher the probability that it is correct.

(a) Without additional instructions. (b) With additional instructions.

Figure 12: Performance for different LLMs with feedback from RLHTF experiments

22

Published in Transactions on Machine Learning Research (01/2026)

Figure 13: Preprocessing of state observation in Reacher environment.

space. Using this full observations with their corresponding binary labels, we train a reward model in a
supervised learning framework. The architecture of this reward model is a fully connected NN with one
hidden layer consisting of 32 nodes, employing a ReLU activation function characterized by a leaky parameter
α = 0.01. In the case of PbRL, three such NNs are initialized at random to create an ensemble. Before
asking the human for a preference, we sample random trajectories and then choose the pair whose preference
has most uncertainty, specifically, the pair for which there is the most disagreement among the ensemble’s
predictive outcomes. During policy training, the agent observes the average reward from the ensemble.

We perform the experiments three times, each with a different target location, for every algorithm under
consideration. The human feedback was provided by one of the authors of this paper. The shaded area in
Figure 7 shows the standard error between the three experiments. Note that the plotted lines have been
smoothed using a convolution operation with a window size of 100 episodes, which helps reduce noise and
reveal clearer data trends.

B.3 Rubik’s Cube

Each trajectory consists of ten steps, during which the agent can perform one of 18 actions: rotating any layer
clockwise or counterclockwise, or making no movement. The experiment begins with the Rubik’s cube in its
solved state, where each face consists of squares of a single color. By default, evaluators view the cube from
the front-facing layer, but they can use keyboard keys to adjust the angle and observe other sides of the cube.

The Gym Rubik’s cube environment observation is a 54-element array with values ranging from 0 to 5,
representing the colors of the entire cube in numerical format. We slice the array to extract the 9 items
corresponding to the front face and we reformat it into a 3x3 grid. We also map the numerical numbers to a
letter representing the color; e.g., instead of ’0’ we write a ’W’ to represent white. A list of ten 3× 3 arrays,
each representing the front face state at one timestep in the trajectory, is added to the user prompt, along
with the text feedback. We don’t include any landmarks in this environment.

Although the environment is discrete and countable, the vast number of possible states of a face makes
tracking the reward distribution for each state impractical. To address this, we model both reward and policy
functions with NNs. The policy function is parameterized by a two-layer neural network, where the first
layer maps the observation space to a 128-dimensional latent representation, followed by a ReLU activation.
The output layer maps this representation to the action space dimensions, applying a softmax activation to
produce a probability distribution over actions. Similarly, the reward function is modeled as a feedforward
neural network with a single hidden layer of size 8. The input is first transformed through a fully connected
layer, followed by a ReLU activation. The output layer then produces a scalar reward value. The reward
model is trained via supervised learning using the dataset generated by a pre-trained gpt-4o model from the
human feedback. We train the agent with the REINFORCE algorithm (Williams, 1992).

23

Published in Transactions on Machine Learning Research (01/2026)

(a) RLHTF with
default learning
rate

(b) True reward
with tuned learn-
ing rate

Figure 14: Obtained pattern in the front face when aiming to create an orange X (a) RLHTF achieves the
desired pattern with 10 human feedback and default hyperparameters whereas (b) the true reward with tuned
learning rate converges to a local maximum after 90,000 iterations of REINFORCE.

Figures 14 show the pattern the agent converges to when tasked with obtaining an orange ‘X’ on the front
face of the cube. With the true environment reward, the agent converges to a local maximum, resulting in
only three of the required squares being orange. In contrast, RLHTF successfully learns the desired pattern.
To produce the results in Figures 14a and 8b, one of the authors acted as the evaluator and provided the
following ten pieces of text feedback:

1. The first 4 states are very bad. The states at time7, 8 and 9 are all wrong. The goal is to have an
orange X (orange squared in both diagonals) in the front side.

2. The first 7 moves are wrong. At time 8 if you add three orange squares (two on the left corners and
one in the middle) it would be good. The goal is to have an orange X by using 5 orange squares in
the diagonals.

3. Until state 3 and including state 3 it is all wrong. At state 4 we should have three more orange
squares on the left corners and in the middle. States 5, 6,7 and 8 are very bad. State 9 with orange
squares on the left corners and the middle would be good. The goal is to have 5 orange squares
arranged in the shape of an X.

4. Until state 5 and including state 5 it is all wrong. At state 6 we should have three more orange
squares on the left corners and in the middle. States 7 and 8 are very bad. State 9 with orange
squares on the left corners and the middle would be good. The goal is to have 5 orange squares
arranged in the shape of an X.

5. From 0 to 3 (including both) the states are wrong. The states at time 6 and at time 9 are perfect.
The states 5, 7 and 8 are not completely correct as they need two extra orange squares on the right
corners. The goal is to have 5 orange squares in the shape of an X.

6. From 0 to 3 (including both) the states are wrong. The states 6 and 10 are perfect. The states 7, 8
and 9 are not completely correct. The goal is to have 5 orange squares in the shape of an X.

7. The states 6 and 10 are perfect. The states 7, 8 and 9 are not completely correct. The goal is to
have 5 orange squares in the shape of an X.

8. The states 6 and 10 are perfect. The states 7, 8 and 9 are not completely correct. The goal is to
have 5 orange squares in the shape of an X.

9. The state 2 is very very bad. The states 6 and 10 are perfect. The states 7, 8 and 9 are not completely
correct. The goal is to have 5 orange squares in the shape of an X.

10. The states 2 and 3 are very very bad. The states 6 and 10 are perfect. The states 7, 8 and 9 are not
completely correct. The goal is to have 5 orange squares in the shape of an X. It could be an orange
X with all the other squares in red or all the other squares in green.

24

Published in Transactions on Machine Learning Research (01/2026)

Figure 15: Reward evolution with episodes of the REINFORCE algorithm in the Rubik environment when
aiming to construct an Italian flag. We compare the performance for RLHTF with 5 text feedback, PbRL
with 5 trajectory comparisons, and true environment reward.

We performed a similar experiment aiming to recreate the Italian flag pattern (three vertical stripes: red,
white and green) on the front side of the Rubik’s cube. The results are shown in Figure 15. Remarkably,
with only five pieces of human feedback, RLHTF nearly doubles the reward achieved by PbRL. However,
RLHTF converges to a reward of 6.67, not to the maximum achievable score of 7.88. This discrepancy may
arise because the performance appears ’good enough’ to the human evaluator, in the sense that it already
fulfills the task. In contrast, when having access to the true reward, the agent may continue learning until it
discovers the optimal way to achieve the task. Nevertheless, this ’good enough’ level is reached faster with
just five pieces of human text feedback than when using the true environment reward at every REINFORCE
step.

To better interpret performance trends, we smooth the rewards per episode in Figures 8b and 15 by doing a
convolution with a window size of 30.

C Policy Learning

The reward model learns to measure how close the trajectory is to human intentions. Consequently, to find
the optimal policy, the agent may directly query the reward model, instead of the human evaluators. This
approach significantly reduces time, energy, and monetary costs during policy learning (Christiano et al.,
2017). The interactions are described by the solid arrows in Figure 2.

The agents follow a greedy policy, they select actions that maximize the expected future rewards as in (1).
In simple tabular settings, we use dynamic programming to find the optimal solution. In more complex or
continuous environments, we model the policy with a fully connected NN, which takes the observed state
as input and outputs an action. We train the network using the REINFORCE algorithm (Williams, 1992),
where the reward signal is given by the reward model. Following standard practices from RLHF, we compute
several REINFORCE epochs before querying the human evaluators and updating the reward model again.

We would like to highlight that our contribution lies in efficient reward modeling with fewer but richer
human interactions. The agent learning phase, which takes most computational burden, follows standard RL
algorithms, such as REINFORCE, whose computational complexities are well-established in prior literature.
We run all our experiments on an Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz processor, most learning was
done in minutes and no experiment took longer than a couple hours.

25

Published in Transactions on Machine Learning Research (01/2026)

Figure 16: System prompt for Gridworld.

D Prompt Engineering

The system prompt design has a strong impact on the algorithm’s performance. Next, we explain some of the
design choices.

We define the coordinates in the grid using chess style notation, i.e., as a letter and number pair indicating
the column and row respectively. This format ensures clear spatial referencing, even with older LLM versions
like GPT 3.5, which often struggle with traditional Cartesian coordinates, e.g. (2, 3), as it can be ambiguous
whether the first number refers to the horizontal or vertical coordinate. With chess notation, we remove this
ambiguity and improve the model’s ability to interpret spatial information correctly.

Additionally, we follow Chain of Thought (CoT) prompting (Wei et al., 2022) to enhance reasoning when
processing human feedback. Since feedback is inherently context-dependent, we introduce an intermediate
classification step where the LLM categorizes the feedback into different types, such as goal description,
imperative instruction or trajectory evaluation. This categorization helps structure the interpretation of
feedback based on its intent.

In accordance with few-shot prompting (Kaplan et al., 2020), we provide demonstrations to steer the model to
better performance. By exposing the model to relevant cases, we reduce ambiguity and improve performance.

Lastly, we use function calling to force ChatGPT’s output to have a prespecified json format, which enables
us to seamlessly extract the necessary information in downstream tasks. The desired output format for the
Gridworld, Reacher and Rubik’s cube environments are described in Figures 18, 21 and 24 respectively. While
the full system prompts are shown in Figures 16, 17, 19, 20, 22, and 23.

26

Published in Transactions on Machine Learning Research (01/2026)

Figure 17: Parameters for system prompt in Gridworld.

27

Published in Transactions on Machine Learning Research (01/2026)

Figure 18: Function calling to force output format in Gridworld.

28

Published in Transactions on Machine Learning Research (01/2026)

Figure 19: System prompt for Reacher environment Part 1.

29

Published in Transactions on Machine Learning Research (01/2026)

Figure 20: System prompt for Reacher environment Part 2.

30

Published in Transactions on Machine Learning Research (01/2026)

Figure 21: Function calling to force output format in Reacher environment.

31

Published in Transactions on Machine Learning Research (01/2026)

Figure 22: System prompt for Rubik’s cube environment Part 1.

32

Published in Transactions on Machine Learning Research (01/2026)

Figure 23: System prompt for Rubik’s cube environment Part 2.

33

Published in Transactions on Machine Learning Research (01/2026)

Figure 24: Function calling to force output format in Rubik’s cube environment.

34

	Introduction
	Related Work
	Preference Based Reinforcement Learning
	Learning from Natural Human Feedback
	Language Models in Reinforcement Learning

	Problem Setting
	Learning a Reward Model from Human Text Feedback with LLMs
	Context Encoding
	Translation function
	Reward Model Update

	Experiments with Human Evaluators
	Feedback Granularity and Performance
	Human Feedback Adaptability to Instructions

	RLHTF in Continuous and Structurally Complex Environments
	Generalization to Continuous Environments
	Towards Adressing Certain Reward Modeling Challenges

	Future Work
	Conclusions
	Broader Impact Statement
	Human Subject Research
	Reliance on LLMs

	Experiment Details
	Gridworld
	Guidelines for Evaluators
	Additional Guidelines Effect on Consensus
	Performance for Different LLMs

	Reacher Environment
	Rubik's Cube

	Policy Learning
	Prompt Engineering

