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Beyond Labels: Information-Efficient
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Selection Queries
Belén Martı́n-Urcelay, Yoonsang Lee, Matthieu R. Bloch, Christopher J. Rozell,

Abstract—Integrating human expertise into machine learning
systems often reduces the role of experts to labeling oracles, a
paradigm that limits the amount of information exchanged and
fails to capture the nuances of human judgment. We address this
challenge by developing a human-in-the-loop framework to learn
binary classifiers with rich query types, consisting of item ranking
and exemplar selection. We first introduce probabilistic human
response models for these rich queries motivated by the rela-
tionship experimentally observed between the perceived implicit
score of an item and its distance to the unknown classifier. Using
these models, we then design active learning algorithms that
leverage the rich queries to increase the information gained per
interaction. We provide theoretical bounds on sample complexity
and develop a tractable and computationally efficient variational
approximation. Through experiments with simulated annotators
derived from crowdsourced word-sentiment and image-aesthetic
datasets, we demonstrate significant reductions on sample com-
plexity. We further extend active learning strategies to select
queries that maximize information rate, explicitly balancing
informational value against annotation cost. This algorithm in the
word sentiment classification task reduces learning time by more
than 57% compared to traditional label-only active learning.

Index Terms—Human oracle, sample complexity, active learn-
ing

I. INTRODUCTION

Integrating machine learning systems with the nuanced
judgments of human experts is a critical goal in domains
ranging from image [1] and text [2] generation to word
sense disambiguation [3] and medical diagnosis [4]. However,
transferring human expertise to computational systems remains
challenging. Although humans excel at making complex judg-
ments, they often struggle to articulate the precise features
or explicit logic that guide their decisions [5]. This gap
between intuitive expertise and machine-interpretable expla-
nations largely reduces the role of humans to that of labeling
oracles [6], [7]. As oracles, experts provide labels that enable
supervised learning algorithms to approximate the implicit
decision functions.

A drawback of this oracle-based paradigm is the substan-
tial human effort and cost required to acquire large labeled
datasets. Active learning [8] has emerged as an efficient
approach to mitigate this cost. Active learning strategies select
informative examples to query, thereby significantly reducing
the number of required labels. Despite these advances, the
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information obtained from such queries is constrained by the
simplistic nature of labels [9]. In practice, queries are often
limited to binary classifications, for which the information
gained is inherently capped at just one bit [10], [11]. This
information bottleneck raises the question: can we move
beyond simple labeling to richer queries that provide more
information per human interaction, while remaining intuitive
for humans?

Even when presented with binary labeling tasks (e.g., “Is
the weather today good or bad?”), humans may engage in
richer cognitive processes. Humans often categorize items by
recalling exemplars and comparing to reference points (e.g.
“This is the worst weather we have had all week”). Despite this
capacity for comparative reasoning, most human-in-the-loop
strategies artificially constrain experts to binary labeling roles.
To harness the underlying context-rich evaluation, we consider
alternative query types: ranking items by attribute strength
or selecting the most representative exemplar from a list.
Capitalizing on these richer query types requires quantitative
models of human responses that render such queries machine-
interpretable and optimizable, as well as an algorithm that
selects informative, cost-aware queries and learns from the
corresponding human answers. We address these requirements
through the following contributions:

• Human response models for rich queries on off-the-
shelf embeddings. We introduce probabilistic response
models to ranking and exemplar-selection queries. These
models are based on the observed relationship between
the perceived score of an item and its distance to the
decision boundary in the embedding space. This enables
the use of rich queries that capture more information per
interaction than traditional labeling.

• Theoretical guarantees and empirical improvements
in sample complexity. We derive theoretical bounds for
the expected stopping time. Empirical evaluations with
simulated annotators based on human data demonstrate
up to 85% reduction in human interactions compared to
traditional active labeling approaches.

• Cost-aware information-rate optimization with hu-
man timing models. We formulate query selection as
maximizing expected bits of information per second
rather than bits per interaction. Using response time mod-
els derived from a crowdsourced study, our cost-aware
approach reduces annotation time by more than half
compared to label-only active learning on word sentiment
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a) Word2Vec embedding b) Word2Vec embedding c) ViT-L/14 embedding d) InceptionResnetV1
for NRC dataset for SocialSent dataset for AVA dataset for UTKFace dataset

Fig. 1: Scores for words (a, b) and image (c, d) attributes as a function of the inner product between their pre-defined embedding
and the ground truth classifier. We observe there exists an approximately affine relationship. Pre-trained embeddings naturally
encode score information as distance from decision boundary, enabling information-rich queries beyond binary labels.

classification tasks, demonstrating practical time savings
beyond sample-complexity gains.

Parts of this work have been previously presented at the
Conference of Decision and Control [12]. This version sub-
stantially extends it in four directions: We introduce ranking
queries that gather full orderings with labels in a single
interaction; we provide sample-complexity guarantees that
explicitly quantify how query type and embedding dimension
affect stopping time; we demonstrate generalization beyond
word sentiment by adding experiments on image aesthetic
classification; and we incorporate an information-rate objec-
tive together with empirically fitted human timing models to
optimize time costs. Together, these additions turn the original
proof-of-concept into a more theoretically grounded and cost-
aware framework for rich-query human-in-the-loop learning.
The paper is organized as follows. In Section II we introduce
the components of our method: human response models,
an information-theoretic question selection strategy, and a
tractable active learning algorithm for query item selection. In
Sections III-A and III-B we present theoretical and empirical
results on sample complexity. Finally, in Section III-C we
describe crowdsourced experiments, derive human time cost
models, and show expected time savings from our query-type
selection based on information rate for the word sentiment
classification task.

II. PROPOSED METHOD

To leverage rich query types, we develop a quantitative
framework comprising three components. First, we construct a
human response model that predicts the likelihood of annotator
answers to ranking and exemplar selection queries. Second,
recognizing that different queries impose varying cognitive
loads, we present an active learning algorithm that balances
informational value against human effort. Third, we derive
variational approximations and greedy heuristics that make
Bayesian inference tractable in high-dimensional embedding
spaces. Together, these components enable principled opti-
mization over expressive query types while accounting for
realistic cost constraints.

A. Human Response Model

Our goal is to learn a decision boundary θ in an embedding
space that accurately predicts the implicit classification rules

of human annotators. We focus on unitary norm binary linear
classifiers θ ∈ Rd, ∥θ∥2 = 1 that label every embedded
item x ∈ Rd in a d-dimensional embedding space as y =
sign(θTx). These linear classifiers generalize to non-linear
problems if there exists a mapping from the original non-
linear space to a higher dimensional embedding in which the
data is linearly separable. Given a set of items labeled by
the annotator, a common method to learn a linear classifier is
logistic regression, in which the label probability is given by

P [y = 1|x] =
(
1 + exp

(
w(θTx)

))−1

, (1)

with w ∈ R representing the inverse of the scale parameter.
The main drawback of reducing annotators to labelers is

that each response conveys at most one bit of information.
Consequently, accruing enough information to learn an
accurate classifier often requires an impractically large
number of queries in data-scarce settings. To mitigate
this information bottleneck, we design queries that solicit
information beyond binary labels. Not only must these
queries be intuitive for human annotators to respond to, but
the queries also require a response model that relates item
embeddings to the classifier in a manner quantifiable for
computational analysis. Our key observation is that off-the-
shelf embeddings naturally exhibit geometry that aligns with
perceived scores: We expect human annotators to be uncertain
when classifying items whose embeddings lie close to the
boundary between classes. Conversely, we expect annotators
to become more confident as the items lie further away from
the boundary, implicitly assigning higher and lower scores
as we move in opposite directions from the classification
boundary. Figure 1 demonstrates that this relationship
holds across a variety of embeddings, tasks and datasets.
Specifically, we examine popular word and image embeddings
[13]–[15] for tasks ranging from word sentiment [16] and
dominance [17] analysis, to image aesthetic perception [18]
and age categorization from a face [19]. In all cases, we
consistently observe a linear relationship between an item
score and the inner product between its embedding and the
Minimum Mean-Square Error (MMSE) classifier. We provide
additional details in Appendix A. Unlike previous work [6],
[20] that learns task-specific embedding spaces, we exploit
this naturally occurring linear relationship. This empirical



3

observation motivates us to formalize the relationship between
embeddings and scores as follows;

Assumption II.1. Annotators associate a score to an item with
embedding xi as

score(xi) = axT
i θ + b+ δi, (2)

where δi represents the noise associated with xi, with a query
dependent extreme value distribution. The scalars a and b,
which describe the affine relationship, are dataset and attribute
dependent.

The score model enables us to derive probability distri-
butions of human responses for a large variety of queries.
We model the noise in Equation (2) so that it leads to
the Boltzmann choice model used in behavioral economics
[21]. We validate the distribution choices empirically in
Appendix A-B. Consider the question qhigh = “Select and
label the item with highest score;” and the noise distribution
δi ∼ Gumbel-Max(µ, σ). In that case, the probability that the
i-th item is selected from a set S = {xk}|S|

k=1 is

P[i|S,θ, qhigh] = P[score(xi) > score(xj),∀j ̸= i]

= P[δj − δi < a(xi − xj)
Tθ,∀j ̸= i]

=
exp ( aσx

T
i θ)∑

x∈S exp ( aσx
Tθ)

, (3)

because this is a logit choice probability [22]. Analogously,
for the question qlow =“Select and label the item with lowest
score” and noise distribution δi ∼ Gumbel-Min(µ, σ), the
probability that the annotator selects the i-th item is

P[i|S,θ, qlow] =
exp (− a

σx
T
i θ)∑

x∈S exp (− a
σx

Tθ)
. (4)

We extend the model to ranking queries qrank = “Rank the
items from highest to lowest score and indicate which is the
last positive example in the ranked list.” Given a set of items
S = {xk}|S|

k=1, let r = [r1, ..., r|S|] represent the permutation
that orders these items, where xrj is the item ranked at position
j. We model the annotator’s ranking as a sequential selection
process:

P [r|S,θ, qrank] =

|S|−1∏
j=1

P [rj |Rj ,θ, qhigh]

=

|S|−1∏
j=1

exp ( aσx
T
rjθ)∑

x∈Rj
exp ( aσx

Tθ)
, (5)

where δi ∼ Gumbel-Max(µ, σ) and Rj = S \
{xr1 , ...,xrj−1

}. This response model is known as the
Plackett-Luce model [23], [24]. By asking the annotators to
mark the “last positive example” in the ordered list, we obtain
a threshold ℓ ∈ {0, 1, ..., |S|} that implicitly captures the labels
for all items. Namely, if ℓ = 0 all items will receive a negative
label. Otherwise, all items in positions i ≤ ℓ receive a positive
label, while the remaining items receive a negative label.

The queries qhigh and qlow request a listwise choice, gath-
ering up to log2 |S| more bits of information per query than
a traditional binary label. The ranking query qrank receives a

full ordering over S and complete labeling further alleviating
the information gain bottleneck. Table I summarizes the dif-
ferences between the proposed rich queries and the traditional
labeling query.

B. Question Selection

To minimize sample complexity, we wish to select the
question and set size such that the information gained from the
query I(θ; o|q, |S|) is maximized. In practice, feasible queries
are often constrained by cognitive and interface limitations
[25]. Under our response model, ranking queries subsume
exemplar selection queries; thus, they provide strictly more
information. Therefore, to minimize sample complexity, when
the domain allows it, we should select qrank. We also empiri-
cally observe that actively selecting between the questions qhigh
and qlow does not have a significant impact on performance, so
when asking selection queries, we alternate between both uni-
formly at random. Moreover, we find that the information gain
is increasing with |S|; thus, to minimize sample complexity,
we select the largest feasible |S|.

In many applications, however, the primary objective is to
minimize a cost different from sample complexity, such as
cognitive effort or total response time, and not all queries incur
the same cost [26]–[28]. To balance informativeness against
response burden, we propose selecting queries that maximize
the information rate, i.e., the expected bits of information
gained per unit cost:

R =
I(θ; o|q, |S|)
E[cost(q, |S|)]

. (6)

Note that to maximize this rate, we need a model of the cost
for each feasible question and item size combination, which
we estimate in Section III-C1 for a word classification task.

C. Algorithm

We propose an online machine learning algorithm to learn a
binary classifier from human feedback. Figure 2 illustrates the
principle of our approach. At each iteration t, the item selector
chooses the item set S such that the expected annotator
response to the preselected question q is as informative as
possible, i.e., the set S that maximizes the mutual information
between the underlying classifier and the annotator response.
Next, the annotator answers the query with ot. In the case of
qhigh or qlow, the answer is an item and its corresponding label
ot = (it, yt); in the case of a ranking question qrank, the answer
involves an item ordering and threshold separating positive
from negative items ot = (r, ℓ). The classifier estimator
collects the response from the annotator and leverages this
information to update the estimator of the classifier θ. The
posterior P[θ|Ft], where Ft = {ok, qk,Sk}tk=1 denotes the
history, is updated using Bayes rule to leverage the likelihood
functions in Equations (1), (3), (4) and (5). The algorithm con-
tinues querying the oracle until the uncertainty is sufficiently
reduced. We measure uncertainty as the determinant of the
posterior covariance matrix |Σt|, which quantifies the volume
of the uncertainty region, and we terminate when |Σt| ≤ ϵd,
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TABLE I: Comparison of Query Types for Human-in-the-Loop Learning

Query Type Outcome Information Expected Response Interactions to
Space (N) per Query (bits) Time (s) 75% Accuracy

Label only 2 ≤ 1 4.37 1310

Label + Selection 2|S| ≤ 1 + log2 |S| 4.01 + 0.63|S| 468
(qhigh, qlow) (|S| = 4: ∼3 bits) (|S| = 4: 6.5s) (|S| = 4)

Label Threshold + Ranking (|S|+ 1)! ≤ log2(|S + 1|!) −0.32 + 4.41|S| 191
(qrank) (|S| = 4: ∼4.3 bits) (|S| = 4: 17.3s) (|S| = 4)

Information per query represents the theoretical maximum mutual information I(θ;O|q, S). Expected response times are modeled from
crowdsourced experiments with human participants on word sentiment classification tasks (Section III-C). Performance metric (75%
accuracy) is based on word sentiment classification experiments with active word selection (Figure 3d).

Algorithm 1 Ideal Human-in-the-Loop Learning (HiLL)

1: Input: X ,q, |S|,P[θ|F0], ϵ
d

2: t = 0
3: while |Σt| > ϵd do
4: St ← argmax

S∈(|X|
|S|)

E [I(θ; o|qt,S,Ft−1)]

5: ot ← human’s response to the query
6: P[θ|Ft] =

P[ot|θ,qt,St]P[θ|Ft−1]
P[ot|qt,St]

7: t = t+ 1
8: end while

Algorithm 2 Approximate HiLL for Selection

1: Input: X , |S|,µ0,Σ0, ϵ
d, N

2: t = 1
3: while |Σt| > ϵd do
4: qt ← sample uniformly from {qhigh, qlow}
5: St ←item set selection(qt,X , |S|,µt−1,Σt−1, N)
6: it, yt ← human response to the query
7: µt,Σt ← belief update(S, it, yt,µt−1,Σt−1)
8: t = t+ 1
9: end while

where ϵ ∈ R is the per dimension threshold. The approach is
summarized in Algorithm 1.

Unfortunately, Algorithm 1 is intractable in high dimen-
sional settings, because the Bayesian update lacks a closed-
form solution and the set of possible items grows combinato-
rially. The next subsections provide approximations to make
the computations feasible. The corresponding tractable imple-
mentations are described in Algorithm 2 and Algorithm 3.

1) Approximation of Belief Update: As line 6 of Algo-
rithm 1 indicates, we use a Bayesian approach to update the
belief of the classifier given the latest observation. When the
question is qt ∈ {qhigh, qlow} and the answer is ot = (it, yt),
the posterior is given by

P[θ|Ft] =
P[it|θ,St, qt]P[y|xi,θ]

P[it, yt|St, qt,Ft−1]
P[θ|Ft−1],

where F0 is the empty set ∅.
The likelihood functions are not conjugates of the prior, so

no analytical closed form expression exists to compute the
posterior. Although, Black Box Variational Inference (BBVI)
[29] is commonly used to approximate the posterior, our
closed-form derivation of the variational updates for this

Algorithm 3 Approximate HiLL for Ranking

1: Input: X , |S|,µ0,Σ0, ϵ
d, N

2: t = 1
3: while |Σt| > ϵd do
4: St ←item set selection(qrank,X , |S|,µt−1,Σt−1, N)
5: rt, lt ← human response to the query
6: for i = 1, 2, ..., |S| do
7: y ← 1 if i ≤ l, else −1
8: µt,Σt ← belief update(S, ri, y,µt−1,Σt−1)
9: end for

10: t = t+ 1
11: end while

Algorithm 4 belief update

1: Input: S, it, yt,µt−1,Σt−1, w,K
2: µt,Σt ← µt−1,Σt−1

3: while µt,Σt not converged do
4: while µt,Σt not converged do
5: ξ2 = w2xTΣtx+ w2(xTµt)

2

6: Σ−1
t = Σ−1

t−1 + 2 tanh(ξ/2)
4ξ w2xxT

7: µt = Σt

[
Σ−1

t−1µt−1 +
(
y − 1

2

)
wx

]
8: end while
9: µt,Σt ← argmin

µq,Σq

KL
(
N (µq,Σq)||N (µt,Σt)

)
−KxT

i µq

+ log
∑|S|

j=1 exp
(
KxT

j µq +
1
2x

T
j Σqxj

)
10: end while
11: Output: µt,Σt

Algorithm 5 item set selection

1: Input: q,X , |S|,µ,Σ, N,w,K
2: S ← {}
3: for i = 1, 2, ..., |S| do
4: {θ̂n}Nn=1 ← sample i.i.d. from N (µ,Σ)
5: s← select item from dataset with Eq. (9)
6: S ← {S, s}
7: end for
8: Output: S
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setting, which we describe next, provides a lower variance
and computationally cheaper approximation.

We approximate the classifier’s density function as a Gaus-
sian distribution θ ∼ N (µ,Σ). We may then compute the
posterior mean and variance given an item label by an iterative
process [30] described in lines 4 to 7 of Algorithm 4. In a
similar fashion, we approximate the classifier posterior given
the item selected with a variational approach. We look for the
variational distribution q(θ) ∼ N (µq,Σq) closest, in terms of
the Kullback-Leibler (KL) distance, to the true posterior. This
is equivalent to finding the distribution that maximizes the log
Evidence Lower BOund (ELBO) [31]

ELBO(q) = −KL(q(θ)∥p(θ)) + Eθ∼q

[
KxT

i θ
]

− Eθ∼q

log |S|∑
j=1

exp
(
KxT

j θ
) , (7)

where xi is the embedding of the item selected by the human,
K = a

σ for qpos queries or K = − a
σ for qneg queries, and the

prior is p(θ) ∼ N (µp,Σp). The first term in Equation (7) is
the KL divergence between two Gaussian distributions,

KL(q||p) =1

2

[
log
|Σp|
|Σq|

− d+ µq
TΣ−1

p µq + µp
TΣ−1

p µp

]
− µq

TΣ−1
p µp +

1

2
tr

{
Σ−1

p Σq

}
.

Because of the linearity property of the expectation, we
compute the second term in Equation (7) as

Eθ∼q

[
KxT

i θ
]
= KxT

i µq.

The third term in Equation (7) has no closed-form solution,
but following [32], we apply Jensen’s inequality to obtain an

Learning Algorithm

Item Selector
argmax

S
I(θ; o|S, q)

Classifier
Estimator

pt = P[θ|Ft]

St

ot

pt

X

p0

Fig. 2: Block diagram for human-in-the-loop learning for
sentiment word classification. At each interaction, the human
annotator receives the query with items that maximize the
information gain about the ground truth classifier θ. In the
example, we ask the annotator to select a word from a list,
and provide its label. The answer to the query is used to update
the estimator of the classifier and select the next query items.

upper bound

Eθ∼q

log |S|∑
j=1

exp
(
KxT

j θ
)

≤ log

|S|∑
j=1

exp

(
KxT

j µq +
1

2
K2xT

j Σqxj

)
.

We approximate the posterior distribution given the item se-
lection as a Gaussian distribution whose mean and covariance
are obtained by maximizing the ELBO lower bound

{µ,Σ} = argmin
µq,Σq

KL(q||p)−KxT
i µq

+ log

|S|∑
j=1

exp

(
KxT

j µq +
1

2
K2xT

j Σqxj

)
. (8)

Putting these together, Algorithm 4 approximates the posterior
by accounting for both the label and item selection. We first
update the posterior according to the label received. Then
we update the posterior according to the selected item with
Equation (8). We repeat both updates until convergence.

When qt = qrank, we compute the posterior as a recursion
of qhigh queries such that

P[θ | Ft] =

|S|∏
j=1

P[rj | θ,Rj , qhigh]P[yt | xrj ,θ]

P
[
rj , yj

∣∣ Rj , qhigh,Ft−1, {(rk, yk)}j−1
k=1

]
× P[θ | Ft−1],

where yj = 1[j ≤ lt]. Said differently, Algorithm 4 is applied
recursively, starting from the top item in the ranked list.

2) Active Learning Heuristic for Item Set Selection: Active
learning [7], [33] looks for the most informative items for hu-
man annotation, such that the sample complexity is minimized.
This implies querying about the items that provide the most
information about the ground truth on expectation. However,
this maximization, as defined in line 4 of Algorithm 1, requires
computing the posterior over every possible item set and
annotator response. There are combinatorially many options to
compare, so even using the belief approximation, this approach
is often computationally intractable.

To select the items in the query, we approximate the
information gain based on query by committee [34]. At
each iteration t, we sample N particles θ̂n

i.i.d∼ P[θ|Ft]. We
maximize the disagreement between the prediction of each
particle and the mean prediction among all particles as,

St = argmax
S∈(|X|

|S|)
H

[
1

N

N∑
n=1

pn(o|S)

]

− 1

N

N∑
n=1

H [pn(o|S)] ,

where pn(o|S) := P
[
ot = o | θ̂n, qt,S

]
represents the prob-

ability mass function over answers o ∈ O for query
qt conditioned on the drawn classifier θ̂n, and H[p] :=
−
∑

o∈O p(o) log2 p(o) is the Shannon entropy. The first term
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in the objective function promotes queries with a high uncer-
tainty of the expected output, which avoids queries for which
the answer is predictable and thus not very informative. The
second term attempts to minimize uncertainty due to intrinsic
noise, for example, discouraging asking labels of neutral words
such as “table” for which the uncertainty mostly comes from
the labeling noise from humans, and not from a lack of
exploration.

Actively selecting the item set significantly improves the
performance, but there exist combinatorially many sets

(|X |
|S|

)
over which to maximize. To avoid this computational burden,
we greedily aggregate a single item

s = argmax
s∈X

H

[
1

N

N∑
n=1

pn (o|{S, s})

]

− 1

N

N∑
n=1

H [pn (o|{S, s})] (9)

to the set until we reach size |S|. Algorithm 5 summarizes the
implementation of the active learning heuristic.

III. RESULTS

A. Theoretical Sample Complexity Bounds

We estimate the classifier at step t using the unbiased
estimator θ̃t = E[θ|Ft]. Using the arithmetic-geometric mean
inequality, we bound this estimator Mean-Square Error (MSE)
as

MSEt = trace(Σθ|Ft
) ≥ d|Σθ|Ft

|1/d, (10)

where Σθ|Ft
= E

[
(θ − θ̃t)(θ − θ̃t)

T |Ft

]
. Analogously

to [6], we observe that a necessary condition to obtain a
low MSE is for the determinant of the posterior covariance
|Σθ|Ft

| to be low. Next, we bound the expected number
of iterations necessary to achieve a low enough posterior
covariance. To facilitate our analysis, we first introduce a set
of assumptions. These assumptions are not only useful for
analytical tractability but also reflect common conditions or
simplifications that align with real-world scenarios.

Assumption III.1. The annotator answer is independent of
the history given the classifier, i.e., p(ot|θ, qt,St,Ft−1) =
p(ot|θ, qt,St).

Assumption III.2. The label of an item is conditionally
independent of the question and the rest of items in the query
given the item, i.e., p(yt|xt, qt,St) = p(yt|xt).

While Assumption III.2 may not be perfectly accurate in
every instance, this simplification is justified because the
intrinsic score perceived by a human towards an item is
primarily determined by the item itself.

Assumption III.3. The information gain of the classifier given
a human answer is lower bounded by a positive constant L.
For ranking queries I(θ; rt, lt|Ft−1) ≥ Lr > 0, for exemplar
selection queries I(θ; it, yt|Ft−1) ≥ Ls > 0,∀t.

This assumption implies that the query pool is sufficiently
diverse and that the human feedback is strictly more informa-
tive than random noise.

Assumption III.4. The prior distribution of the classifier p0
is uniform over a hypercube [−M,M ]d, for some M > 0.5.

We assume a bounded parameter space to ensure realizabil-
ity. Given this constraint, the uniform distribution is the least
informative choice, as it is the unique maximum-entropy prior
[35].

Our main result is the following:

Theorem III.5. Let Tϵ = min{t :
∣∣Σθ|Ft

∣∣1/d < ϵ} be the
stopping time of Algorithm 1. Under Assumptions II.1 through
III.4, E[Tϵ] is bounded as

d

2

log2
2M2

πeϵ

log2 N
≤ E[Tϵ] ≤

d

2L
log2

e4d2M2

2
√
2(d+ 2)ϵ

− 1,

with N = (|S|+1)! and L = Lr for ranking queries q = qrank,
and with N = 2|S| and L = Ls for exemplar selection queries
q ∈ {qhigh, qlow}.

Proof: Let h(θ;Ft) := Eθ|Ft
[− logP(θ|Ft)] be the en-

tropy of the posterior distribution after observing t interactions.
For the lower bound, we note that Algorithm 1 selects the
query deterministically as a function of its latest classifier
estimator, i.e., I(θ; qt,St|Ft−1) = 0, so that

EFt
[h(θ;Ft)] = h(θ;F0)−

t∑
j=1

I(θ; oj , qj ,Sj |Fj−1)

= d log2 2M −
t∑

j=1

I(θ; qj ,Sj |Fj−1)

−
t∑

j=1

I(θ; oj |qj ,Sj ,Fj−1)

≥ d log2 2M − t log2 N. (11)

The first equality follows from the chain rule of mutual
information, the second equality follows from Assumption
III.4, and the last inequality holds because I(θ; ot|qt,St,Ft−1)
is maximized for uniform outcomes. Equation (11) implies

E[Tϵ] ≥
d log2 2M − E [h(θ;FTϵ

)]

log2 N
. (12)

As Gaussian distributions maximize entropy for a given
covariance [35, Theorem 8.6.5], so that

h(θ;FTϵ
) ≤ d

2
log 2πe|Σθ|FTϵ

|1/d ≤ d

2
log 2πeϵ. (13)

Combining Equation (12) and (13), we obtain

E[Tϵ] ≥
d

2

log2
2M2

πeϵ

log2 N
.

To obtain the upperbound, we define the random variable
Ut :=

Zt

L − t, where Zt := −h(θ;Ft). From Lemma B.5 we
know Ut is a submartingale that fulfills the conditions of the
optional stopping theorem [36], so that

E[ZTϵ ]

L
− E[Tϵ] ≥

E[Z0]

L
− E[0]

⇐⇒ E[ZTϵ
]− E[Z0]

L
≥ E[Tϵ]. (14)
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By Assumption III.4 the initial entropy is

Z0 = −h(θ;F0) = −d log2 2M. (15)

From Assumption III.3 and Lemma B.1,

E[ZTϵ ] ≤ E[ZTϵ−1 ]− L. (16)

Since P(θ|Ft) is log-concave, we invoke [6, Lemma 3.1.] to
obtain

ZTϵ−1
= −h(θ;FTϵ−1

) ≤ −d

2
log2

2|Σθ|FTϵ−1
|1/d

e4d2/(4
√
2(d+ 2))

≤ −d

2
log2

8
√
2(d+ 2)ϵ

e4d2

=
d

2
log2

e4d2

8
√
2(d+ 2)ϵ

. (17)

Substituting Equations (15), (16) and (17) into Equation (14),
we obtain the desired upper bound of the expectation

E[Tϵ] ≤
1

L
(E[ZTϵ−1]− L+ d log2 2M)

≤ d

2L

(
log2

e4d2

8
√
2(d+ 2)ϵ

+ log2 4M
2

)
− 1

≤ d

2L
log2

e4d2M2

2
√
2(d+ 2)ϵ

− 1.

Theorem III.5 shows that the estimator uncertainty ϵ decays
exponentially with the number of queries E[Tϵ]. This result
extends the upper bound in [6] to non-equiprobable queries.
The parameter M appears because we allow for more freedom
in the prior. The more constrained the prior is, i.e., the lower
M , the fewer interactions we need. In contrast to the lower
bound of [6], we generalize beyond binary queries; thus, the
denominator log2 N appears in the lower bound, suggesting a
lower stopping time may be possible as the query complexity
increases. We empirically corroborate the dependence of the
stopping time on the question type and item set size in the
next section. The lower and upper bounds on the stopping
time are monotonically increasing with d, which is consistent
with the intuition that more interactions are required to learn
classifiers in higher-dimensional embedding spaces. Crucially,
both N and L are larger for ranking queries than for exemplar
selection queries. Consequently, both bounds on the stopping
time are lower for ranking queries, theoretically confirming
that their higher information content necessitates fewer user
interactions.

B. Empirical Sample Complexity Reduction

We empirically validate Algorithms 2 and 3 on word and
image classification tasks with existing crowdsourced datasets.
To facilitate further exploration and validation by the research
community, we provide the code for replicating our experi-
ments1 [37].

1https://github.com/BelenMU/HiTL-SentimentClassify/

1) Word Sentiment Classification: We first focus on the
binary word sentiment classification task [38]. While humans
can intuitively label words according to their connotation as
positive (e.g., healthy) or negative (e.g., scary) [39], justifying
the categorization in machine-interpretable terms proves chal-
lenging for most. We test the performance of our algorithms
in learning this implicit knowledge from humans. We use the
list of most frequent words in the decade of the 2000s [16].
For every word w, we simulate the implicit human score by
sampling from N (µw, σ

2
w), where µw and σ2

w are the mean
and variance of the valence score as given by the dataset
[16]. This simulation approximates a realistic distribution of
human sentiment scores for each word and captures inter-
subject variability in valence assessments.

We use existing 300-dimensional monolingual word embed-
dings [13] to which we prepend a 1; this way, the parameter
θ accounts for both the direction and the offset of the
hyperplane characterizing the classifier. We define the ground-
truth classifier θ ∈ R301 as the hyperplane that minimizes the
labeling error over all words in the dataset. Figures 3a and
3b show how the distance from the estimator to the ground
truth decreases as more queries are collected. All the Bayesian
strategies lead to an MSE reduction, but the convergence speed
markedly differs. The richer the query, the faster the decrease
of the error: qrank outperforms qhigh and qlow, which in turn
outperform traditional labeling queries. Additionally, actively
choosing the items in the queries boosts performance. In fact,
word selection between two actively chosen items surpasses
ranking two randomly selected words. Algorithms 2 and 3
thus facilitate a faster reduction in MSE, effectively reducing
sample complexity.

The lower bound in Theorem III.5 suggests that larger
word sets should accelerate learning; we observe this behavior
empirically when comparting Figures 3a and 3b. Figure 4
confirms this effect for word selection queries: after 1000
iterations, the MSE is about 20% lower when the annotator
chooses from 10 options instead of 2.

Beyond MSE, we also assess the word classification ac-
curacy. Given a word w with embedding xw, we report the
prediction sign(θ̃

T
xw) is accurate when it matches its label

sign(µw). To measure the predictor θ̃ accuracy, we consider
the words with |P [Yw = 1]−0.5| = |

∫∞
0

fN (µw, σ
2
w)−0.5| ≤

0.1, where fN represents the probability density function of a
normal distribution. This range is selected to avoid words that
have a completely neutral score, like “branch” or “mouth.” We
focus on words with stronger sentiment scores, for which the
prediction accuracy of our algorithm can be most meaningfully
assessed.

Figures 3c and 3d show how classification accuracy evolves
with the number of interactions. As a baseline, using only ran-
domly chosen labeling queries leads to a slow increase in accu-
racy, requiring more than 2000 interactions to reach 75% accu-
racy. When labels are collected using active learning, the same
accuracy is achieved after about 1300 labeling queries. Allow-
ing the annotator to also select the most positive or most nega-
tive word among four candidates yields further gains: with ran-
domly chosen word sets, 75% accuracy is reached in roughly
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Label + Word Ranking + Active

Label + Word Ranking

Label + Word Selection + Active

Label + Word Selection

Label + Active

Label

a) MSE vs. interaction for |S| = 2 b) MSE vs. interaction for |S| = 4

c) Accuracy vs. interaction for |S| = 2 d) Accuracy vs. interaction for |S| = 4

Fig. 3: Performance of the human in the loop learning algorithms with human data on the word sentiment analysis task. All
configurations are run with 10 different random initializations. The lines represent the mean of those experiments, while the
shaded areas represent the standard error. Adding word selection or ranking to the queries together with actively selecting the
word set reduces the number of iterations needed to achieve a good performance.

Fig. 4: Performance of Algorithm 2 with human data on word
sentiment classification. The larger the word set, the faster the
decrease of MSE, as suggested by the lower bound in Theorem
III.5.

700 interactions, dropping to about 500 interactions when the
word sets are chosen actively. Ranking queries qrank offer the
most substantial acceleration, requiring just 315 rankings of

four random words or 196 rankings of actively chosen words
to match the 75% accuracy. This represents a notable reduction
of approximately 85% in the number of interactions needed
compared to active labeling queries. These results demonstrate
that our method not only improves estimator alignment metrics
but also enhances the performance of the downstream classifi-
cation task. Our results confirm the efficiency and practicality
of Algorithms 2 and 3 for valence classification.

2) Image Aesthetic Classification: We further evaluate our
approach on the task of binary image aesthetic classification.
While humans naturally perceive the beauty of an image,
automatically quantifying this aesthetic quality remains a
challenging computational task [40]. To test the efficiency of
our algorithms in learning this subjective quality, we utilize
the Aesthetic Visual Analysis (AVA) dataset [18]. We focus
on a subset of over 20,000 landscape images, which we
embed into a 768 dimensional space with CLIP [14] and
prepend a one. Each image is associated with a distribu-
tion of scores between 1 and 10 collected from an online
photography community. We define the ground-truth binary
labels by using the dataset median mean score as a threshold
τ = 5.58, creating two balanced classes. To simulate human
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Fig. 5: Performance of the human in the loop learning algo-
rithms with human data on the image aesthetic classification
task across 10 initializations. There are |S| = 4 candidate
images for ranking and selection questions. The accuracy
increases faster when asking richer queries.

evaluations, we leverage the crowdsourced score distributions:
for every queried image, we sample a score from its empirical
distribution and deterministically map these scores to query
responses. Namely, we compare the sampled scores against
the threshold τ to simulate human labeling; we select the
image with the maximum or minimum sampled score to
answer qhigh and qlow, respectively; and we order the images
according to their sampled scores to simulate a human ranking.
Figure 5 shows how the classification accuracy of the learned
classifier evolves as more feedback is gathered. Consistent
with our previous experiments, richer queries require sub-
stantially fewer interactions to achieve a given accuracy. In
particular, qrank yields the fastest accuracy gains, followed by
the selection queries qhigh and qlow, while traditional labeling
leads to the slowest improvement. In fact, solely labeling does
not reach a 65% accuracy within 2000 interactions. In contrast,
augmenting labels with image selection or ranking reduces the
number of required interactions to approximately 400 and 900,
respectively. Similarly, achieving a 63% accuracy with qrank
requires 84% less interactions than traditional labeling.

C. Empirical Time Savings in Cost Aware Query Selection

1) Human Cost Model: To accurately maximize the infor-
mation rate defined in Equation (6), we require a model of
the human cost. Since the data collection costs are typically
driven by collection times [41], [42], we define the cost as the
expected time in seconds required for an annotator to answer
a query. This response time depends on both the question type
q (ranking vs. selection) and the set size |S|.

We estimated this cost model in the context of the word
sentiment classification task using crowdsourced experiments.
We recruited participants through Prolific2 and recorded their
response times for different combinations of question type
and set size. Because we expect word selection questions qlow
and qhigh to incur similar times, we restricted data collection

2The study was categorized as minimal risk research qualified for exemption
status by the Institutional Review Board (IRB).

Fig. 6: User interface for selection query. User must select the
most positive word in the list, in this case “bad” and label the
word according to its connotation, in this case “negative”.

Fig. 7: User interface for ranking query. The user must rank
the words from the most negative word in the list “terrified”
to the most positive “safe”, and then use the vertical bar to
separate words with positive and negative connotations.

for selection queries to qhigh. Each participant answered 20
qrank queries and 20 qhigh queries (in addition to 5 gold-
standard questions per question type, used as attention checks
and excluded from the analysis). We followed A/B testing
guidelines and randomly assigned annotators to start with
either the word selection or the word ranking queries. After
excluding the participants who failed the attention checks, data
from 83 participants remained for selection queries and 63 for
ranking queries. Note that there is substantial overlap, most
participants contributed to both question types. The graphic
user interfaces used to record response times are shown in
Figures 6 and 7. Additional details of the study may be found
in Section C of the supplemental material.

To select an appropriate parametric form for response time,
we compared candidate models using a Vuong closeness test,
a likelihood-ratio based test for comparing non-nested models.
See Appendix C-B for further details on the candidate models
and statistical results. Under our experimental conditions, a
linear model t̂ = β0 + β1|S| describes the time response to
selection queries significantly better than a logarithmic model
t̂ = β0 + β1 log |S| (p-value = 10−5). Similarly, the response
times collected for ranking queries are significantly better
explained by a linear model than by a purely quadratic model
t̂ = β0 + β1|S|2 (p-value = 4 × 10−5). Motivated by these
results, we fitted linear models with least-squares regression
on individual response times and modeled the human response
times as

t̂high = t̂low = 4.01 + 0.63|S| and t̂rank = −0.32 + 4.41|S|.
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Fig. 8: Mean response time from crowdsourced experiments
and linear model for different question types and word set
sizes. The points show the empirical mean of the data, and
the bars show the standard error among all the combined
response times collected. We observe that the linear models
closely track the empirical means across word set sizes.

Figure 8 shows the fitted predictions against the empirical
mean response times for each set size. The linear models
capture the overall increase in response time with set size.
Although substantial trial-to-trial variability remains, this is
typical in human response-time data. As expected, the slope
for ranking queries is steeper than for word selection queries,
indicating that adding items to a set incurs a substantially
higher time penalty when participants must produce a full
ranking and labeling rather than identify and label a single
most positive word from the set.

2) Information Gain Ratios: Maximizing the information
rate in Equation (6) also requires estimates of the expected
information gained for each combination of question type
and set size. Directly recomputing these quantities at every
iteration would be computationally expensive. Instead, we
exploit an empirical regularity in the information gain ratios
across queries.

As illustrated in Figure 9, the ratios of information gain be-
tween different queries remain approximately constant across
interactions. In particular, more complex queries consistently
yield higher information, and in all our experiments, we
observe that these relative advantages are stable not only
across iterations but also across different initializations of the
algorithm. This behavior allows us to estimate the ratios of
expected information gain for each question type and set size
relative to labeling from a small number of computations.
Concretely, we compute the expected information gain as in
Subsection II-C2 for a few initial conditions and iterations.
Then, we use the resulting average information gain ratio
relative to the labeling query as a proxy for the proportional
information gain in Equation (6). The values of these proxies
strongly depend on the annotator noise σ, as well as on the
slope of the linear relationship between item distance to the
classifier and score, i.e., a in Equation (2). This dependence
is shown in Figure 10. When a/σ is large, it is easier to
distinguish the score ordering of items that are close in the em-
bedding space, thereby increasing the benefit of richer queries.

0 5 10 15 20 25 30 35 40 45 50
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1.5
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2.5

Fig. 9: Estimated information gain for several query types. We
empirically observe that the ratio of information gain between
query types stays approximately constant with interactions.
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Fig. 10: Estimated information gain for different slope and
noise factor ratios a/σ.

For a fixed set size S, ranking queries consistently have a
higher estimated information gain than selection queries. For a
fixed question type, increasing |S| raises the expected informa-
tion gain. However, these improvements exhibit diminishing
returns, especially when a/σ is small.

3) Question and Set Size Selection: Our goal is to select
both the question type and the set size |S| that maximize
information rate, by balancing information gain and human
effort. Once the response time and the relative information
gains of different query configurations have been estimated,
we select the combination according to Equation (6). Figure 11
summarizes this trade-off for the word sentiment classification
task. Figure 11a shows the predicted information rate for
each question and set size when using the response time
models fitted from human experiments. For any fixed |S|,
ranking queries achieve a higher information rate than selec-
tion queries. The two question types exhibit different behavior
as |S| increases. For ranking, the information rate grows
monotonically with |S| over the feasible range (|S| ≤ 10).
For selection questions, however, the information rate peaks
at |S| = 3 and decreases for both smaller and larger set
sizes. This optimal query depends strongly on the underlying
information gain estimation and cost models. For example,
Figure 11b illustrates the information rates when the response
time models are altered; in this case, the optimal query
becomes a selection question with two words.
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Fig. 11: Predicted ratio of information gain over response time on the word sentiment classification task for different response
time models. To maximize the rate with the interface we tested, we should query ranking questions with 10 words. However,
if an interface resulted on response time model in (b) we should query selection questions with 2 words.
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Fig. 12: MSE evolution on the word sentiment classification task. The gains in sample complexity with complex queries is
not so prominent in time cost. In fact, while the sample complexity decreases faster with word selections of size 10 vs. 3, the
time cost decreases slower.

Different query selections translate into distinct learning
behaviors. Figure 12a compares the reduction in MSE as a
function of the number of interactions on the word sentiment
classification task. Larger and richer queries exhibit a strong
advantage in sample complexity. When measured in wall-clock
time, however, the picture changes. As shown in Figure 12b,
the additional time required for larger sets can offset their
sample-complexity gains, so that selection from 10 words
reduces error more slowly in time than selection from 3 words.
Consistent with our analysis, ranking queries with 10 items
offer clear benefits in both sample complexity and time, but the
improvements in time are less pronounced than in interaction
count. These results underscore the importance of optimizing
for information rate rather than sample complexity alone when
costs are query dependent.

IV. CONCLUSION AND FUTURE WORK

We have presented a framework for incorporating nu-
anced expert feedback into interactive learning. By exploiting
embedding geometries, we have designed human-in-the-loop
algorithms that use exemplar selection and ranking queries,
providing richer supervision than standard label queries. We

have shown, both theoretically and empirically, that these
queries reduce sample complexity and accelerate learning. We
have also proposed a query-selection strategy that accounts
for query-dependent costs and demonstrated time savings on a
word sentiment classification task, moving towards more cost-
effective alignment between models and human expertise.

Several directions remain open. The relationship between
scores and embeddings suggests new query types, such as
asking which item a user can label most confidently or is
most uncertain about. As in much of the literature, we assume
human responses are conditionally independent given latent
parameters, which may fail due to context effects or fatigue.
Future work includes learning user-specific behavior models
or adapting query policies online to user state.
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APPENDIX A
LINEAR RELATIONSHIP BETWEEN EMBEDDINGS AND

CLASSIFIERS

Assumption II.1 is motivated by the observed relationship
between implicit human scores and the geometry of existing
embedding spaces. As Figure 1 shows, there exists a linear
relationship between human scores and the distance from items
to the MMSE classifier in several standard embedding spaces.

A. Empirical Evidence Across Domains
Previous influential work [43] identifies three fundamental

dimensions of meaning: valence, representing the spectrum
between positivity and negativity; arousal, representing the
contrast between active and passive emotions; and dominance,
capturing the power dynamics from submissive to dominant.
Figures 1a, 13a and 13b demonstrate that the scores across
all three dimensions, as provided by the National Research
Council Canada (NRC) dataset [17], vary linearly with the
distance to the MMSE classifier. This linear behavior is con-
sistent across distinct and independently gathered datasets [16]
of valence scores: Figure 1b shows the learned human scores
of the top-5000 most frequent non-stop words in the decade
of the 2000s, the same dataset used for the word sentiment
classification tasks in Sections III-B and III-C. Figure 13c
examines the adjectives appearing more than 100 times in the
data from the 2000s, we observe a similar linear behavior in
their mean score in these distinct datasets.

We construct our word embedding representations through
three steps. First, each word is mapped to a 300-dimensional
vector using the standard word2vec mapping3 [13]. Second,
the embedded words are normalized to unit norm. Finally, fol-
lowing standard practice for linear classification, we prepend
a constant value of 1 to each normalized vector, yielding
301-dimensional feature vectors. This augmentation allows the
classifier θ ∈ R301 to capture both the decision boundary
direction and offset.

Next, we show that the linear relationship holds in the
visual domain. Figure 1c shows average aesthetic scores from
human raters for 21,979 landscape images in the AVA dataset
[18] versus their distance to the MMSE classifier in the 769-
dimensional (we prepend a 1) ViT-L/14 embedding space
pretrained on CLIP [14]. The classifier separates high and low
aesthetic images using the median score (5.48) as threshold.
We observe a strong correlation between score and distance.

Figure 1d compares the ages of 23,625 aligned and cropped
face images from the UTKFace dataset [19] against their dis-
tance to a classifier separating faces under 30 years from older
faces. Face images are embedded using InceptionResnetV1
pretrained on VGGFace2 [15], yielding 512-dimensional vec-
tors to which we prepend a constant value of 1. We observe a
linear score-distance relationship again in this image embed-
ding space.

B. Gumbel Noise Model Validation
We model the noise in Equation (2) as extreme-value

distributed because it yields the Boltzmann choice model, a

3http://ixa2.si.ehu.es/martetxe/vecmap/en.emb.txt.gz

canonical framework in behavioral economics and discrete
choice theory [21]. To validate this modeling assumption em-
pirically, we examine the residuals δi = score(xi)−(axT

i θ+b)
against both Gumbel-Max and Gumbel-Min distributions.

Figure 14 shows diagnostic plots for the word valence (a)
and image aesthetic (b) datasets. The Gumbel-Max distribu-
tion shows a superior fit, with Kolmogorov-Smirnov statistics
of 0.095 for the word valence dataset and 0.030 for the image
aesthetic dataset (indicating maximum CDF deviations of 3%
and 9.5%, respectively). Visually, the residual histograms align
well with the fitted PDFs, the empirical and theoretical CDFs
nearly overlap, and the Q-Q plot points closely follow the
theoretical line across the central range of the distribution.
While some misspecification appears in the extreme tails,
the Gumbel-Max distribution provides both tractable human
decision-making models and a practical approximation for 60-
80% of the data distribution in both datasets.

The Gumbel-Min distribution shows acceptable but slightly
weaker fit, with Kolmogorov-Smirnov statistics of 0.136
for word valence and 0.123 for image aesthetics. While
these values indicate larger maximum deviations compared
to Gumbel-Max, they remain within conventional bounds for
acceptable model fit in behavioral data analysis.

APPENDIX B
AUXILIARY LEMMAS AND PROOFS

Lemma B.1. The posterior distribution of the classifier given
the history p(θ|Ft) is log-concave (LCC).

Proof:

pt(θ) : = p(θ|Ft) = p(θ|ot, qt,St,Ft−1)

(1)
=

p(ot|qt,St,θ,Ft−1)p(θ|qt,St,Ft−1)

p(ot|qt,St,Ft−1)

(2)
=

p(ot|qt,St,θ)
p(ot|Ft−1)

p(θ|Ft−1)

(3)
=

t∏
j=1

p(oj |qj ,Sj ,θ)
p(oj |Fj−1)

p0(θ)

(4)
=

∏t
j=1 p(oj |qj ,Sj ,θ)

p(Ft)
p0(θ)

where

(1) follows from Bayes theorem,
(2) follows from Assumption III.1, and because given the

past history the query and word set are selected deter-
ministically by the algorithm,

(3) follows by induction,
(4) follows from the law of total probability.

Combining Equations (1)-(5) and Assumption III.2, we deduce
that the likelihood of the human response, p(oj |qj ,Sj ,θ) , is
given by a product of softmax and logistic functions, both of
which are LCC. From Assumption III.4, the prior p0(θ) is
sampled from a uniform distribution, which is also LCC. The
product of LCC functions is also LCC, thus the posterior pt(θ)
is LCC.
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a) Valence in NRC b) Arousal in NRC Valence of adjectives in SocialSent

Fig. 13: Relationship between the empirical mean score of words, given by the NRC [17] or SocialSent [16] lexicons, and the
distance of their word2vec embeddings to the ground truth classifier. We observe there is an approximately linear relationship.

a) Word Valence

b) Image Aesthetic

Fig. 14: Goodness-of-fit diagnostics for the Gumbel-Max and Gumbel-Min noise assumption in the linear score model. Each
row shows, from left to right, the empirical residual density vs. fitted Gumbel PDFs, the empirical CDF vs. fitted Gumbel
CDFs, and a Q–Q plot comparing empirical and theoretical Gumbel quantiles.

Lemma B.2. The likelihood of any word and label pair x ∈ X
and y ∈ {−1, 1} is lower bounded as

min
x,y,S,θ,q∈{qhigh,qlow}

P [x, y|S,θ, q] ≥ γ1γ2 > 0,

with γ1 :=
exp (−| aσ |M

√
Pxd)

exp (−| aσ |M
√
Pxd)+(|S|−1) exp (| aσ |M

√
Pxd)

and

γ2 = 1
1+exp (wM

√
Pxd)

.

Proof: By construction, all word embeddings are
bounded, i.e., ∥x∥22 ≤ Px}. From Assumption III.4, we know
the norm of the classifier is bounded by ∥θ∥22 ≤ dM2. We
leverage these constraints to bound the likelihood.

Note that

exp
(
−
∣∣∣ a
σ

∣∣∣M√
Pxd

)
≤ exp (kxTθ) ≤ exp

(∣∣∣ a
σ

∣∣∣M√
Pxd

)
,

where k = a
σ when q = qhigh and k = − a

σ when q = qlow.
Therefore,

min
x,S,θ,q

P [x|S,θ, q]

≥
exp

(
−
∣∣ a
σ

∣∣M√Pxd
)

exp
(
−
∣∣ a
σ

∣∣M√Pxd
)
+ (|S| − 1) exp

(∣∣ a
σ

∣∣M√Pxd
) =: γ1.

In a similar fashion, we use Assumption III.2 to bound
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min
y,x,S,θ,q

P [y|x,θ, q,S]

= min
x,θ

min
y∈{−1,1}

 1

1 + exp
(
yw(θTx)

)


≥ 1

1 + exp (wM
√
Pxd)

=: γ2.

We conclude the proof by combining the bounds

min
x,S,y,θ,q

P [x, y|S,θ, q]

= min
x,S,y,θ,q

P [x|S,θ, q]P [y|x,S,θ, q] ≥ γ1γ2.

Corollary B.3. The likelihood of any answer to a query in
q ∈ Q = {qhigh, qlow, qrank} is lower bounded as

min
o,S,θ,q

P [o|S,θ, q] ≥ 2γL > 0,

with γL = log2

(
γ
|S|−1
1 γ

|S|
2

)
.

Proof: The likelihood of any answer to a ranking query,
i.e., ranking order and threshold pair (r, l), is lower bounded
as

min
r,l,S,θ,q

P [r, l|S,θ, qrank]

= min
r,l,S,θ,q

P [r|S,θ, qrank]P [l|r,S,θ, qrank]

= min
r,l,S,θ,q

|S|−1∏
j=1

P [rj |Rj ,θ, qhigh]×

P
[
y(xr1 , ....rl−1) = 1 ∩ y(xrl , ..., r|S|) = −1|r,S,θ, qrank

]
≥ γ

|S|−1
1 γ

|S|
2 > 0,

which is strictly lower than the lower bound from Lemma B.2,
because γ1γ2 < 1.

Lemma B.4. The expected difference in entropy from one
iteration to the next is bounded as

Eoi [|h(θ;Fi)− h(θ;Fi−1)|] ≤ γ <∞,

with γ = 16d+ d log2 2πed− 2γL.

Proof: We extend [6, Lemma A.2.] to bound the expected
posterior entropy difference for non-equiprobable and non-
binary query schemes. We rewrite

|h(θ;Fi)− h(θ;Fi−1)| =(h(θ;Fi−1)− h(θ;Fi))
+ (18)

+ (h(θ;Fi)− h(θ;Fi−1))
+
,

where x+ := max(x, 0) denotes the positive part.

Note that

−h(θ;Fi)
(1)

≤ log2 Eθ|Fi
[p(θ|Fi)]

(2)
= log2 Eθ|Fi

[
p(oi|θ, qi,Si,Fi−1)

p(oi|qi,Si,Fi−1)
p(θ|Fi−1)

]
(3)

≤ log2 Eθ|Fi

[
p(θ|Fi−1)

p(oi|qi,Si,Fi−1)

]
(4)

≤ −1

2
log2

∣∣Σθ|Fi

∣∣+ 8d+
d

2
log2 d

− log2 p(oi|qi,Si,Fi−1)

(5)
= −1

2
log2

(
(2πe)d

∣∣Σθ|Fi

∣∣)+ 1

2
log2(2πe)

d

+ 8d+
d

2
log2 d− log2 p(oi|qi,Si,Fi−1)

(6)

≤ −h(θ;Fi−1) + 8d+
d

2
log2 2πed− γL

:= −h(θ;Fi−1) +
1

2
γ.

Thus, we bound the first summand in (18) as
(h(θ;Fi−1)− h(θ;Fi))

+ ≤ 1
2γ. The inequalities follow

(1) from Jensen’s inequality,
(2) from Bayes Theorem and because the query is determined

by the history,
(3) because oi is discrete and its likelihood is a valid prob-

ability distribution, thus the likelihood is at most 1, and
the logarithm is monotonically increasing,

(4) applying the bound in [44, Theorem 5.14] to the LCC
isotropic V = Σ

−1/2
θ|Fi

W , where W ∼ p(θ|Fi), together
with the density of a linear transformation of a random
variable.

(5) adding and subtracting 1
2 log2(2πe)

d,
(6) from the maximum entropy distribution [35, Theorem

8.6.5.] and Corollary B.3.
To bound the second summand in (18), we recall the non-

negativity of mutual information

0 ≤ I (θ; oi, qi,Si|Fi−1) = Eoi [h(θ;Fi−1)− h(θ;Fi)]

= Eoi

[
(h(θ;Fi−1)− h(θ;Fi))

+ − (h(θ;Fi)− h(θ;Fi−1))
+
]

≤ 1

2
γ − Eoi

[
(h(θ;Fi)− h(θ;Fi−1))

+
]
.

Therefore, Eoi

[
(h(θ;Fi)− h(θ;Fi−1))

+
]
≤ 1

2γ. Combining
the bounds we conclude

Eoi [|h(θ;Fi−1)− h(θ;Fi)|] ≤
1

2
γ +

1

2
γ = γ.

Lemma B.5. The random variable Ui := −h(θ;Fi)
L − i is

a submartingale that fullfils the conditions of the optional
stopping theorem.

Proof: The expectation of Ui given the previous values
of the sequence is

E[Ui|U i−1] =
E[Zi|Zi−1]

L
− i ≥ E[Zi−1|Zi−1] + L

L
− i

=
Zi−1

L
− (i− 1) = Ui−1, (19)
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where Zi = −h(θ;Fi). The first inequality follows from
Assumption III.3.

We bound the expected increment per step with Lemma B.4,

E [|Ui+1 − Ui|] = E
[∣∣∣∣Zi+1

L
− i− 1− Zi

L
+ i

∣∣∣∣]
=

E [|Zi+1 − Zi|]
L

+ 1 ≤ γ

L
+ 1. (20)

Lastly, we want to show that E[T ] <∞. Note that a bound
on the determinant of the posterior covariance implies a bound
on the posterior entropy, so we introduce a threshold 0 <
τ < ∞ dependent on ϵ such that the stopping time becomes
T := min{i : −h(θ;Fi) > τ} = min{i : Ui >

τ
L − i}.

From [45, Theorem 4.2.9.] we know that −h(θ;Fi∧T ) is
also submartingale, where i ∧ T := min{i, T}. Additionally,
it is bounded by

−h(θ;Fi∧T ) ≤ τ +
γ

L
+ 1,

by definition of T and (20). Therefore, by the Martingale
convergence theorem [45, Theorem 4.2.11.], as i → ∞,
−h(θ;Fi∧T ) converges a.s. to a limit H with E[|H|] < ∞.
Analogously, Ui∧T also converges a.s. to a limit U with
E[|U |] <∞ as i→∞. Putting this together

i ∧ T =

∣∣∣∣(i ∧ T )− −h(θ;Fi∧T )

L
+
−h(θ;Fi∧T )

L

∣∣∣∣
≤

∣∣∣∣(i ∧ T )− −h(θ;Fi∧T )

L

∣∣∣∣+ ∣∣∣∣−h(θ;Fi∧T )

L

∣∣∣∣
= |Ui∧T |+

|−h(θ;Fi∧T )|
L

a.s.−−→ |U |+ |H|
L

<∞.

For large enough i, i ∧ T = T , which implies T < ∞ a.s.
and therefore E[|T |] <∞. Combining this fact with (20), we
conclude that the conditions for the optional stopping theorem
are fulfilled.

APPENDIX C
DETAILS ON HUMAN RESPONSE MODELING

To model annotator response times for word selection and
word ranking queries, we conducted a crowdsourced study on
Prolific. The study was categorized as minimal risk research
qualified for exemption status under 45 CFR 46 104d.2 by the
Institutional Review Board (IRB).

A. Participant Selection and Demographics

To promote data quality, we restricted participation to
Prolific users with an approval rate of at least 95% and
at least 1,000 prior submissions. To ensure strong English
proficiency, we limited eligibility to participants located in
the United Kingdom or United States who reported com-
pleting an undergraduate degree and listed English as their
primary language. All eligible participants received detailed
instructions on the task and the annotation interface. Within
these instructions, we included multiple-choice attention check
questions to verify comprehension. Twenty-two individuals did
not pass the preliminary attention checks and were excluded
from the study.

Fig. 15: Age distribution of participants. The mean age is 43.25
years and median 44 years.

After applying eligibility filters and attention checks, 101
annotators participated in our study. The demographic break-
down was as follows: 42 female and 59 male participants;
41 residing in the UK and 60 in the US. The majority of
participants were students (69 yes, 17 no, 15 no response).
The age distribution is shown in Figure 15, with a median age
of 44 years. The breakdown by ethnicity and country of birth is
provided in Tables II and III, respectively. Most participants
self-identified as White and were born in either the UK or
USA.

TABLE II: Ethnicity distribution

Ethnicity Count

White 68
Asian 15
Black 11
Mixed 4
Other 1
Not available 2

Total 101

TABLE III: Country of birth distribution

Country Count

United States 55
United Kingdom 36
Nigeria 2
Bulgaria 1
China 1
Hungary 1
Indonesia 1
Japan 1
Korea 1
Malta 1
Philippines 1

To mitigate potential confounds caused by interface famil-
iarity and learning effects, we followed standard A/B testing
practice and counterbalanced the query order. Half of the
participants completed the word-ranking queries first and then
the word-selection queries, while the remaining participants
completed the two query types in the reverse order.
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Fig. 16: Distribution of total study completion time per partic-
ipant (including instructions and all word-selection and word-
ranking queries).

Figure 16 reports the total time taken by participants to
go through the instructions and answer all 50 queries (25 qrank
queries and 25 qhigh queries). On average, participants required
approximately 20 minutes. Based on the observed completion
times and the study compensation, the hourly wage was on
average 12.23 USD, with a median of 10.60 and a standard
deviation of 9.53.

Beyond the eligibility criteria and pre-task attention checks
described above, we applied additional post hoc quality control
to identify inattentive annotators before modeling response
times. In particular, we embedded the following five gold-
standard sentiment queries with clear and unambiguous senti-
ment polarity:

• amazing, rejection
• bad, horrible
• terrified, worried
• inspiring, boring
• happy, sad

These gold-standard queries were intentionally distributed
across the task at fixed positions (queries 1, 2, 11, 12, and 21),
ensuring that attention was assessed at the beginning, middle,
and end of the experiment rather than only at a single point.
We excluded any participant who failed to exactly match the
expected response on at least one gold-standard query, since
these items were constructed to have an unambiguous correct
answer for annotators who understood the task and responded
attentively.

After applying all quality-control filters, including gold-
standard checks, the final dataset contained 1648 observations
for the word selection task and 1256 observations for the
ranking task. The breakdown by query type is shown in Table
IV. A total of 83 participants remained for the word selection
task and 63 participants remained for the ranking task. These
cleaned datasets were used for all subsequent analyses.

B. Data Analysis

Before collecting the data, we hypothesized the following
models could accurately describe the response time:

TABLE IV: Counts by word set size after preprocessing (gold-
standard queries removed).

N Ranking Selection

2 142 147
3 184 272
4 175 269
5 204 234
6 176 276
7 191 225
8 184 225

• Hypothesis 1 Linear model for selection queries:
Drawing from the literature on serial scanning, we hy-
pothesize that the response time increases linearly with
the number of options: t̂selection = β0 + β1|S|.

• Hypothesis 2 Logarithmic model for selection queries:
Based on Hick’s law, we hypothesize that the response
time increases logarithmically with the number of op-
tions: t̂selection = β0 + β1 log |S|.

• Hypothesis 3 Linear model for ranking queries: As-
suming reading or viewing the options dominates the
burden, we hypothesize that the response time increases
linearly with the number of options: t̂rank = β0 + β1|S|.

• Hypothesis 4 Quadratic model for ranking queries:
Inspired by the complexity of simple sorting algorithms
like Bubble sort, we hypothesis the response time in-
creases quadratically with the number of options: t̂rank =
β0 + β1|S|2.

We evaluated these candidate parametric forms on the cleaned
dataset. Table V presents the complete regression results for
all candidate models. For both question types, the linear
models achieved higher R2 values and lower MSE, confirming
superior fit as concluded by the Vuong tests. Notably, the
slope for ranking queries (4.41) is substantially steeper than for
selection queries (0.63), indicating that each additional word
imposes a much greater time burden when participants must
produce a complete ranking rather than identify a single word.

C. Item difficulty stratification and effect on response time

Curriculum learning [46] suggests that optimal learning
strategies often progress from simple examples to more com-
plex ones. We hypothesized that our information-gain-based
active learning strategy might exhibit a curriculum-like pro-
gression: selecting relatively easy queries at first, and transi-
tioning to more challenging boundary cases as the uncertainty
about the classifier decreases. If true, learning stage could
confound the response time model beyond the effect of set
size |S|.

To test this, we analyzed queries from three stages of the
learning process: early (first 5 queries), mid-stage (around
iteration 200), and late-stage (around iteration 1000). Using
selection stage as a proxy for difficulty, we examined whether
queries selected at different points in training exhibited differ-
ent response time patterns after controlling for set size.

Figure 17 presents the response time as a function of
word set size |S| for these three difficulty tiers. To formally
test whether difficulty explains additional variance beyond
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TABLE V: Comparison of candidate response time models fitted using least-squares regression.

Query Type Model β0 (SE) β1 (SE) R2 Adjusted R2 MSE N

Selection Linear 4.01 (0.24) 0.63 (0.04) 0.112 0.111 11.22 1648
Selection Logarithmic 3.10 (0.32) 1.84 (0.14) 0.097 0.097 11.36 1648

Ranking Linear −0.32 (0.88) 4.41 (0.16) 0.373 0.372 125.44 1256
Ranking Quadratic 9.69 (0.57) 0.42 (0.02) 0.356 0.356 127.69 1256
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Fig. 17: Query Response time versus query set size stratified
by stage of the learning process. Queries were sampled from
early (first 5 queries), mid (iteration 200), and late stages
(iteration 1000). The shaded area represents the standard
error. The three categories show highly overlapping trends,
indicating that learning stage contributes minimal variance
beyond set size.

set size, we conducted an analysis of covariance (ANCOVA)
comparing a baseline model containing only |S| to one that
also included difficulty as a categorical predictor. The extended
model did not improve fit (p = 0.90), indicating that once
query length is accounted for, difficulty contributes no mea-
surable additional variance to response time. Consequently, we
model response time solely as a function of |S| in the main
analysis.


